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Summary 
 
As the number of photovoltaic (PV) systems in the Netherlands has increased fast and will 

continue to increase, fluctuations due to passing clouds may cause large power flow fluctuations 

in the electricity network. To support proper grid management in the already congested grid, an 

accurate PV power forecast is necessary at a high temporal and spatial resolution.  

 

The objective of this project was to investigate how a set of all-sky imagers, also know as cloud 

cameras, can be used to analyse cloud movement and to predict how these clouds will move at 

future time horizons up to one hour, in order to forecast the power generated by solar PV systems 

on the ground.  

 

Three all-sky imagers have been installed at the UU campus. One all-sky imager has been installed 

at KNMI, where cloud height can be calibrated with an existing ceilometer. Algorithms for the 

detection of clouds and analysis their movement have been developed, based on various machine 

learning approaches. Using stereographic analyses, cloud base heights have been determined. 

This allowed to construct a shadow map on the ground, which has been validated using irradiance 

data for UU campus.  

 

A forecast method has been developed using machine learning, i.e., the long short-term memory 

neural network method performed best, although more tests are needed regarding different 

weather conditions with different cloud fractions.  

 
 
 
  



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

4 

Preface 
This final report describes the work performed in the project SolFaSi (Solar Forecasting with All-

Sky-Imagers, project number TEUE 1821406) as carried out within the framework of the Nationale 

regelingen EZ-subsidies, Topsector Energie, executed by the Rijksdienst voor Ondernemend 

Nederland.  The report addresses the results obtained. In addition, several project changes, 

mostly due to the Covid pandemic, are described.  
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1. Introduction 
 
Traditionally, the electricity network has been organized in a top-down fashion in which energy 

is produced centrally and then cascades down towards various well-defined groups of end-

users. However, with the ongoing energy transition this relatively straightforward organization 

is changing drastically, and the complexity of control is increasing. New and more diverse assets, 

including photovoltaic (PV) solar energy systems, wind turbines, biogas, electric vehicles, heat 

pumps, and combined heat and power units (CHPs), are playing an increasingly prominent role 

in the energy mix. The intermittency of, and stochastic fluctuations in, the production of 

especially solar and wind pose new and considerable challenges for the adequate control of 

network power flows and quality. In addition, these new assets are also often characterized by 

various degrees of decentralization, thus leading to a transformation of the traditional 

electricity grid into a dynamic network of heterogeneous assets loosely organized in microgrids 

of interacting prosumers.  

Ubiquitous and affordable sensor and communication technology are increasingly being used in 

daily life. This allows for gathering large amounts of data that provide insight in the evolution of 

electricity demand and supply and therewith enable for better planning and matching. In line 

with the present organization of the electricity market, power forecasts need to be made one 

day ahead while imbalances are settled on the day on a 15-minute basis. Program responsible 

parties (PRPs) use forecasts of electricity demand, based on weather forecasts, and manage 

their assets accordingly. With increasing penetration of distributed assets, in particular PV 

systems, on the distribution grid, these forecasts need to be adapted to compensate for local 

generation. At the end of 2023 a cumulative total of 24.4 GWp of PV capacity has been installed 

[1], about half of that in residential areas. With the plans described in the “Roadmap PV systems 

and Applications” a 10 times increase is foreseen by 2050 [2]. Also, already now local grid 

congestion is forcing network operators to disallow new grid connections and utilities to charge 

PV system owners in residential areas for grid feed-in, as a result of the decision not to abolish 

net-metering.  

On the low-voltage grid level, high penetration of PV poses congestion problems, and 

distribution system operators (DSOs) will need additional means to guarantee security of supply 
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at all times of the year. A high temporal and spatial resolution forecast is needed to allow 

proper control of the grid. In combination with increasing (local) demand for electrified heating 

and electric mobility, local grid management can only be properly done using accurate forecast 

of supply (PV) and demand. Noteworthy, highly accurate forecasts of short-term local PV-power 

generation may enable higher PV penetration by employing short-term flexibility options while 

saving investments in grid-infrastructure and limit the need for PV curtailment. For example, 

studies in the USA and the Netherlands on the effect of solar forecasting for high PV penetration 

has shown that accurate forecasts may reduce flexibility reserves requirements in energy 

imbalance markets by about 20% [3] and that the potential of active power curtailment, grid 

reinforcement and supercapacitors to prevent or mitigate voltage fluctuations are increased 

with accurate forecasting [4].  

Several solar forecasting methods exist, i.e., based on numerical weather predictions, statistical 

learning, satellite imaging and all-sky imaging. The practical use of these methods ranges from 

meters to kilometers and from seconds to months [5], see Figure 1. For forecast time horizons 

up to 30 minutes and spatial resolution of 1-200 meters, all-sky imaging is identified as the 

preferred method [6].  
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2. Aanleiding, doelstelling en resultaat 
 
Motivation 

Traditionally, the electricity network has been organized in a top-down fashion in which energy is 
produced centrally and then cascades down towards various well-defined groups of end-users. 
However, with the ongoing energy transition this relatively straightforward organization is changing 
drastically, and the complexity of control is increasing. New and more diverse assets, including 
photovoltaic (PV) solar energy systems, wind turbines, biogas, electric vehicles, heat pumps, and 
combined heat and power units (CHPs), are playing an increasingly prominent role in the energy mix. 
The intermittency of, and stochastic fluctuations in, the production of especially solar and wind pose 
new and considerable challenges for the adequate control of network power flows and quality. In 
addition, these new assets are also often characterized by various degrees of decentralization, thus 
leading to a transformation of the traditional electricity grid into a dynamic network of heterogeneous 
assets loosely organized in microgrids of interacting prosumers.  

Ubiquitous and affordable sensor and communication technology are increasingly being used in daily 
life. This allows for gathering large amounts of data that provide insight in the evolution of electricity 
demand and supply and therewith enable for better planning and matching. In line with the present 
organization of the electricity market, power forecasts need to be made one day ahead while 
imbalances are settled on the day on a 15-minute basis. Program responsible parties (PRPs) use 
forecasts of electricity demand, based on weather forecasts, and manage their assets accordingly. 
With increasing penetration of distributed assets, in particular PV systems, on the distribution grid, 
these forecasts need to be modified to compensate for local generation. At the end of 2018 4.2 GWp 
of PV capacity has been installed [1], predominantly in residential areas. It is expected that over 2.5 
GWp will be installed in 2019, and total capacity will approach 7 GWp [2]. Moreover, with the plans 
described in the “Roadmap PV systems and Applications” a 50 times increase is foreseen by 2050 [3]. 
If this growth pace continues it will only take a few years to reach the situation that all electricity 
demand in the Netherlands will be supplied by PV on a sunny day in May. Obviously, this requires a 
drastic change in traditional network operation on all voltage levels. 

On the low-voltage grid level, high penetration of PV may pose congestion problems, and distribution 
system operators (DSOs) will need additional means to guarantee security of supply. A high temporal 
and spatial resolution forecast is needed to allow proper control of the grid. In combination with 
increasing (local) demand for electrified heating and electric mobility, local grid management can only 
be properly done using accurate forecast of supply (PV) and demand. Noteworthy, highly accurate 
forecasts of short-term local PV-power generation may enable higher PV penetration by employing 
short-term flexibility options while saving investments in grid-infrastructure and limit the need for PV 
curtailment. For example, a study in the USA on the effect of solar forecasting on energy imbalance 
markets has shown that accurate forecasts may reduce flexibility reserves requirements by about 20% 
[4]. 

Several solar forecasting 
methods exist, i.e., based on 
numerical weather predictions, 
statistical learning, satellite 
imaging and all-sky imaging. 
The practical use of these 
methods ranges from meters to 
kilometers and from seconds to 
months [5]. For forecast time 
horizons up to 30 minutes and 
spatial resolution of 1-200 
meters, all-sky imaging is 
identified as the preferred 
method [6].  

In all-sky imaging a wide-angle 
(180o) camera, usually referred 
to as sky camera, takes pictures of the sky which are analyzed to identify clouds. An example is 
shown in Figure 2 of six images taken 10 minutes apart. From analysis of such series of pictures, 

Figure 1. Overview of solar forecasting methods and their 
spatial and temporal horizons [5]. Figure 1. Overview of solar forecasting methods and their spatial and temporal horizons [5]. 
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In all-sky imaging a wide-angle (180o) camera, usually referred to as sky camera or all-sky-

imager (ASI), takes pictures of the sky which are analyzed to identify clouds. An example is 

shown in Figure 2 of six images taken 10 minutes apart by an ASI on the roof of one of the UU 

campus buildings. From analysis of such series of pictures, cloud motion vectors can be inferred, 

which are used to predict the future cloud cover and ground irradiance. Cloud classification 

schemes have been derived to account for the different cloud optical thicknesses (COTs) that 

affect the ground solar irradiance, e.g.: shading by thin clouds (low COT) leads to higher ground 

irradiance than shading by thick clouds (high COT) [7,8]. 

 

 

 

  

Figure 2. Example of six sky camera images at 10-minute interval illustrating the dynamical behaviour 

of clouds. Images have been taken on 2 July 2014 at Utrecht Science Park. 
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cloud motion vectors can be inferred, which are used to predict the future cloud cover and ground 
irradiance. Cloud classification schemes have been derived to account for the different cloud optical 
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Figure 2. Example of six sky camera images at 10-minute interval illustrating the dynamical behavior of 
clouds. Images have been taken on July 2, 2014 at Utrecht Science Park. 
 
Objectives 
The objective of this project is to develop an accurate PV power forecast method at high time 
resolution and high spatial resolution using a small network of all-sky imagers. From sequences of 
images, the movement of clouds in the sky can be followed in 3D and algorithms will be developed to 
predict cloud movement in the future.  
 
To this end, we will to set-up a small network of 
four all-sky imagers at UU campus and KNMI (see 
Figure 3) to allow stereoscopic analysis of 3D cloud 
movement and from that derive a moving 2D 
shadow field, using machine learning and optical 
flow techniques [9,10]. This shadow field will be 
correlated with the power generated by the 4000 
PV modules at the UU campus buildings (blue 
rectangles in Figure 3). This correlation will be used 
to forecast PV power in the future based on the 
predicted shadow field movement.  
 
We target a low as possible relative root-mean-
square-error (rRMSE) of <10%, and a forecast skill 
(FS) of 20-30% [11]. The latter is a metric that 
describes how a forecast method is performing with 
respect to persistence-based forecast, in which the 
irradiance (or PV power) at a certain point in time in 
the future is identical to the irradiance (PV power) 
measured or determined at a certain time t=0. If FS is larger than 0, the forecast method under study 
performs better than persistence. We will investigate rRMSE and FS for forecast time horizons up to 
60 minutes, for different types of clouds.  

Figure 3. Location of 4 all-sky imagers at UU 
campus (UPOT, Olympos, Farm) and KNMI. 
In blue UU PV systems (1.2 MWp in total).  

KNMI

Olympos

UPOT

Farm
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2. Goal and purpose 
 
The goal of this project was to develop an accurate PV power forecast method at high time 

resolution and high spatial resolution using a small network of all-sky imagers. From 

sequences of images, the movement of clouds in the sky is followed and algorithms will be 

developed to predict cloud movement in the future. 

A small network of four all-sky imagers has been set-up at UU campus and KNMI (see Figure 3) 

to allow stereoscopic analysis of cloud movement and to derive a moving shadow field, using 

machine learning techniques [9,10]. We planned to correlate this shadow field  with the power 

generated by the 4000 PV modules at the UU campus buildings (blue rectangles in Figure 3).  

 

The accuracy of the developed forecasting methods is assessed by using several metrics, such as 

relative root-mean-square-error (rRMSE) and forecast skill (FS) [11]. Target values were rRMSE < 

10% and FS >20%.  The forecast skill is a metric that describes how a forecast method is 

performing with respect to persistence-based forecast, in which the irradiance (or PV power) at 

a certain point in time in the future is identical to the irradiance (PV power) measured or 

determined at a certain time t=0. If FS is larger than 0, the forecast method under study 

performs better than persistence.   

Figure 3. Planned locations of 4 all-sky imagers at UU campus (UPOT, Olympos, Farm) and KNMI. PV 

systems at UU campus (1.2 MWp in total) are indicated by the blue rectangles. 
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cloud motion vectors can be inferred, which are used to predict the future cloud cover and ground 
irradiance. Cloud classification schemes have been derived to account for the different cloud optical 
thicknesses (COTs) that affect the ground solar irradiance, e.g.: shading by thin clouds (low COT) 
leads to higher ground irradiance than shading by thick clouds (high COT) [7,8]. 
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3. Results 
 
3.1. Setting up the imager network 
This section involves the deployment of an All-Sky camera network set up at three locations at 

UU campus combined with one at KNMI to capture cloud movements at locations shown in 

Figure 4. Here the setup of the network is described, including the individual structural support 

systems, and data acquisition scheme that includes the KNMI camera's contributions.   

Four high-end CMS-Schreder ASI-16/50 cameras supplied by EKO are installed. The precise 

coordinates of these locations are 52°06'04"N 5°10'40"E (De Bilt site), 52°05'16"N 5°10'03"E 

(Freudenthalgebouw UU), 52°05'25"N 5°10'43"E (Accelerator Building UU1), and 52°04'53"N 

5°11'09"E (Tolakker Building, Farm), all within a maximum distance of 1.2 km from each other as 

seen in Figure 4.  

 

In a collaborative effort with technical support staff from UU’s Earth Simulation Laboratory 

(ESL), each camera was installed with a custom-designed support structure (see Figure 5), 

 
1 Note: the Olympos location was not found suitable due to newly built high buildings that would cast too much 
shade on the camera’s. The nearby Accelerator building, owned by Kadans, allowed us to install an ASI on their 
roof. 

Figure 4: Google Maps view of the All-Sky cameras network located east of The City of Utrecht, The 
Netherlands. 
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ensuring stability and optimal functioning in different settings. A thorough search for the best 

locations on various buildings was performed ensuring each camara could be securely mounted 

to withstand various environmental conditions like wind and rain. We paid careful attention to 

factors like temperature, humidity, and the direction of the sun and wind, thus minimizing any 

Figure 5. Different Customized structures for installing the ASIs at different locations and their 
preparations. (A) Structure Type 1 hangs over a pole at the Freudenthal building. (B) Structure Type 2, 

using a solid base, this type of structure is used for The Accelerator building, (C) Similar to structure 
Type 1, this is located at KNMI, De Bilt, The Netherlands. (D) Preparation Phase: Showcasing the 

installation process with the UU installation team from the Earth Science Laboratory (ESL). 

A C B 

D 



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

12 

potential shadows on the cameras. The effectiveness of these installations can be seen in Figure 

5, which illustrates the robust and well-considered setup. 

 

After the installation of the camera a networking process is needed to generate a virtual private 

network (VPN) to securely transfer data to UU data servers. Data collection was set at 15 second 

time resolution, leadiing to about 1000 images collected per day. This requires a large data 

storage system, which was organized with support from the ICT department of the Faculty of 

Geosciences. Also KNMI data is shared to this data storage system. A diagram illustrating the 

data flow of the sky camera network is presented in Figure 6.  

 

A detailed explanation of the various components and their interconnections in the data 

acquasition set-up is given below: 

Sky-cameras: There are several buildings, each labeled with "LAN: IP-address:" and equipped 

with sky cameras connected to them. These buildings are named: 

• Accelerator (at UU campus) 

• Freudenthal (UU) 

Figure 6. Diagram of data acquisition from different sky imagers. 

. 
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• The Tolakker (UU) 

• KNMI 

FTP Servers: Each sky camera is connected to an FTP (File Transfer Protocol) server, indicated by 

the FTP icon. These servers are responsible for receiving data from the sky cameras. 

Central Storage: There is a central storage server (also indicated with an FTP icon) which seems 

to be the repository for all the data coming from individual FTP servers.  

Data Share PV-group: From the central storage, there is a link to a data share for the UU-PV-

group (which likely stands for Photovoltaics group), indicating a shared resource for data 

collected from the sky cameras. 

Researchers: The flow of information leads to researchers who have the ability to read and 

download the data from the central storage. 

Solar Monitoring: In addition to the skycameras, there is a separate system for solar 

monitoring, with a separate IP address provided. 

KNMI: At the bottom right of the image, there is a label for KNMI, which signifies that this 

institution is overseeing its own data flow, but also shares the data to the UU network. 

The diagram in Figure 6 effectively shows how data is collected from a Network of sky cameras 

located on different buildings, consolidated, and then made available for analysis. Each 

component's role is clearly marked, with arrows indicating the direction of data flow. This setup 

would typically be used for comprehensive monitoring and analysis of sky and weather 

conditions. 

 

The sky images constitute frames extracted from video recordings conducted during daylight 

hours (6:00 AM to 8:00 PM). These recordings were captured using a 5MP CMOS camera (1 x 

1.8") equipped with a 360-degree fish-eye lens. The camera settings were maintained constant, 

including aperture, white balance, and dynamic range. Each image was captured with a 

resolution of 1920 x 1920 pixels, at 15-second intervals. 
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The four sky images of Figure 7A, starting capture at 13:36:00 on March 1, 2023, exhibits a 

sequence of sky images on a clear sky-day. Figure 7B, starting capture at 09:53:00 on March 18, 

depicts a partly overcast sky (>70% clouds) where a thick layer of clouds forms a uniform, gray 

expanse, effectively obscuring the sky and sunlight in some parts. The moving clouds close to 

the sun will lead to fast irradiance changes when the clouds pass the sun. Finally, Figure 7C, 

starting capture at 10:54:00 on March 20, presents a fully cloudy day with substantial cloud 

cover, however less dense than that in Figure 7B. The cloud distribution in this image permits 

occasional views of the blue sky, offering insights into the diversity of cloud formations. 

 

In summary, the SolFasi project has successfully established a robust network of All-Sky 

cameras, adeptly overcoming initial installation challenges and Covid restrictions through 

collaboration and expertise. The planning and execution of the camera installations, data 

Figure 7. Sequence of sky images by ASI-16 in different weather conditions (acquired at KNMI site 
Cabauw). (A) Four sequential sky images on a clear day captured from 13:36:00, March 1st, 2023. (B) 
Four sequential images of an overcast day captured from 09:53:00, Mach, 18th. (C) Four sequential 

images of a fully cloudy day captured from 10:54:00, March 20th.  

A 

B 

C 
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networking, and storage systems signify an important milestone in the project and allows for 

the development of PV power generation forecasting. The imagery captured across various 

weather conditions, as showcased in the figures, underscores the potential of this technology to 

provide valuable insights into dynamic cloud formations and their direct influence on solar 

irradiance. 

3.2. Methodology 

In this research, our primary objective is to harness the potential of an all-sky imaging network, 

comprising sophisticated cloud cameras, to analyze movement of clouds and predict their future 

course up to one hour ahead. This prediction is crucial for accurately forecasting solar 

photovoltaic (PV) power generation on the ground. From the four all-sky imagers a large 

database has been generated including images, meteorological parameters from KNMI, and 

solar irradiance. Our approach encompasses the development of innovative algorithms for 

creating 3D cloud information and 2D cloud shadow fields using advanced machine learning 

techniques. Despite facing challenges in networking and data integration, particularly in 

correlating shadow fields with PV power, we have made significant steps in analyzing cloud 

dynamics and their impact on solar energy forecasting.  

The scope of the developed methodology can be subdivided in three parts: 

I. Cloud Detection Methodology: This part details the methodology for detecting and 

analyzing clouds from sky images, including the algorithms used and the results obtained 

from these methods. This includes the pre-processing and analysis of all-sky image data 

to accurately identify cloud patterns and characteristics. 

II. Analysis of Cloud Motion and 2D Shadow Mapping: Here, the process of using selected 

features from the cloud detection phase to analyze cloud motion is described, how cloud 

base height can be obtained, and how to create a 2D shadow map on the ground. This 

part of the methodology elaborates on how these features are instrumental in 

understanding cloud dynamics and their subsequent impact on solar irradiance. 

III. Innovative Method for Cloud Base Height Determination: The third step of our 

methodology introduces an innovative approach for determining cloud base height using 

a network of N cameras. This technique will utilize the collective data from multiple 
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imaging points to enhance the accuracy and reliability of cloud base height 

measurements, contributing significantly to our understanding of cloud behavior and 

movement. 

This methodology forms the backbone of our research, aiming to significantly enhance the 

precision of solar PV system performance predictions. 

 

3.2.1. Cloud Detection Methodology 
Cloud detection plays a critical role in short-term solar forecasting, which is key to predicting the 

impact of cloud cover on solar radiation [12]. This section delves into various techniques for 

short-term forecasting, emphasizing the use of sky imagers for accurate cloud detection. 

Essential to this process is the effective pre-processing of sky images and the deployment of 

automatic cloud detection methods for precise pattern identification. Among these, so-called 

superpixel techniques have emerged as particularly effective in enhancing cloud detection 

capabilities. 

The advancement in automated cloud detection marks a significant shift from traditional 

manual labeling methods. Automated techniques, leveraging sophisticated computer vision and 

machine learning algorithms, offer a more efficient and accurate approach to identifying cloud 

patterns [13-15]. The pre-processing of sky images is a crucial step in this context. It involves 

refining the images to accentuate relevant features for cloud identification, thereby preparing 

the data for a more impactful analysis. 

Superpixel segmentation stands out in this realm, offering a refined approach to grouping pixels 

based on their similarities. This technique generates superpixels that create more coherent and 

interpretable segments of the image, crucial for detailed cloud pattern analysis [16,17]. The 

Simple Linear Iterative Clustering (SLIC) algorithm exemplifies this approach. SLIC forms 

compact and uniform superpixels that adhere to cloud boundaries in an image, enhancing the 

precision of cloud pattern identification [18]. 

The integration of advanced pre-processing steps with state-of-the-art automatic cloud 

detection methods, particularly superpixel segmentation, significantly improves the accuracy 

and efficiency of cloud detection. This advancement is pivotal for enhancing the overall 

reliability of short-term solar forecasting. 
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Data Collection 

We deploy the cloud detection method on data collected from two CMS-Schreder ASI-16/50 

cameras installed at the Cabauw BSRN site [19], located in the west of the Netherlands 

(51.971100° N, 4.926700° E and 51.970000° N, 4.926389° E) and managed by KNMI, as we 

initially had limitations in accessing data at the UU locations. The installation of these cameras is 

depicted in Figure 8. The distance between the cameras is 759.56 meters.  

Each camera is equipped with a robust coated quartz glass dome, 180°/360° fish-eye optics, and 

a 4-Megapixel resolution sensor (1920×1920 pixels Fish eye), and includes an IR-cut filter to 

prevent sensor degradation from long-term direct sunlight exposure. The ASI-16/50 camera 

contains built-in ventilation and up to 60W airflow heating, which helps to minimize 

condensation on the glass dome and quickly removes raindrops and snow, ensuring clear 

imaging. This system has been tested to operate effectively in harsh environments, 

withstanding temperatures ranging from -40°C to over +50°C. Its double-cover design and 

Figure 8. Skycam locations at the Cabauw BSRN station, The Netherlands. 
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forced ventilation are specifically tailored to reduce damage risks due to prolonged exposure to 

intense direct sunlight. Additionally, the cameras come with temperature and humidity sensors. 

 

Proposed methodology 

The methodology for this study centers around data collected from all-sky imagers located in 

Cabauw, The Netherlands. Specifically, we have selected days featuring a variety of weather 

conditions—clear skies, partial cloudiness, and overcast—to ensure a comprehensive analysis 

across a spectrum of cloud covers. This is depicted in the dataset, which consists approximately 

400 sky images, each paired with its manually labeled counterpart to serve as a ground truth for 

validation, as shown in Figure 9.  

To improve the quality of the sky images, we have implemented a series of pre-processing 

steps. Initially, images are converted from JPG to PNG format to benefit from the latter's 

lossless nature. Subsequent steps involve applying a Gaussian blur with a 7x7 pixel kernel to 

smooth out irregularities, followed by a Laplacian operator of the same kernel size to 

accentuate edges. Additionally, we evaluate the standard deviation of luminance across a 7x7 

pixel area to gauge the average pixel variation within its vicinity. Further enhancements include 

Figure 9. Acquired sky images (a)-(d) and their corresponding ground-truth (GT) (e)-(h) manually 
segmented. Images are aquired at KNMI site Cabauw [19]. Four images with different cloud cover 
percentages are analysed, ranging from partially cloudy (PC, 15%-60%-85%) to a fully cloudy sky.  



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

19 

image resizing (de-fisheye), noise reduction, image distortion correction, and contrast 

adjustment—all aimed at optimizing the images for subsequent analysis. Resultls of these pre-

processing efforts are illustrated in Figure 10. 

Following pre-processing, we apply superpixel segmentation techniques, namely SLIC [18], 

Watershed [20], and Felzenszwalb algorithms [21], to group pixels into meaningful regions 

based on similarity. This effectively segments the cloud regions from the clear sky areas, as 

explained in the flowchart provided in Figure 11.  

Validation of the segmentation accuracy involves extracting key cloud features, such as shape, 

texture, color, and spatial information, from the segmented regions. These features are then 

juxtaposed with those from the ground truth images to assess congruency. The performance of 

the segmentation techniques is quantified using the metrics precision, recall, and F1 score (see 

details below). 

 

Proposed superpixel technique for automatic cloud labeling 

In this study, a novel algorithm for automatic cloud labeling and detection based on the 

superpixel-based Technique (SPT) is proposed. The algorithm consists of two steps: firstly, 

Figure 10. Example of a sky images pre-processed using a linear De-fisheye (library in Python). Images 
correspond to images (a)-(d) in Figure 9. 
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applying a selected SPT to cluster pixels in ground-based cloud images using contour and 

texture characteristics to ensure consistent grouping within each superpixel, and secondly, 

validating the accuracy of the technique in automatically detecting clouds using these 

superpixels. 

In this subsection, three SPT algorithms were studied: 1) Superpixel Linear Iterative clustering 

SLIC [18], 2) Watershed [20], and 3) the Felzenszwalb algorithm [21]. The SLIC algorithm is a 

popular superpixel-based approach for cloud detection in sky images. It aims to divide an image 

into compact and meaningful regions (superpixels) based on color and spatial proximity. The 

algorithm follows a step-by-step process to achieve accurate and efficient cloud segmentation, 

the flowchart is depicted in Figure 12. 

 

Figure 11. Flowchart for Sky Image Segmentation. 
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The 5-dimensional distance D is defined as:  

𝐷	 = 	$𝐷!"#"$% + (
𝑀
𝑆 × 𝐷&'(!))

%		 

𝑆 = $𝐾
𝑁 

where K is the desired number of superpixels and N is the total pixels of the image and M is the 

compactness factor. Dcolor is the color distance between a pixel and its assigned superpixel 

center, and Dspace is the spatial distance between the pixel and the center. 

The color distance Dcolor is calculated using the Euclidean distance between the pixel color (R, G, 

B) and the superpixel center color (Rc, Gc, Bc): 

𝐷!"#"$ 	= 	√((𝑅	 −	𝑅!)²	 +	(𝐺	 −	𝐺!)²	 +	(𝐵	 −	𝐵!)²) 

Figure 12. Flowchart of the SLIC algorithm. 
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The spatial distance Dspace is calculated using the Euclidean distance between the pixel 

coordinates (x, y) and the superpixel center coordinates (xc, yc): 

𝐷&'(!) =	√((𝑥	 −	𝑥!)²	 +	(𝑦	 −	𝑦!)²) 

A compactness term M is also incorporated in the objective function to ensure superpixel 

compactness. 

 

Comparison and Evaluation metrics 

In comparison to state-of-the-art methods, in this study, the Red-Blue Ratio (RBR) method is 

considered to be a technique to compare the superpixel techniques with, due to its higher 

accuracy [22]. It relies on analyzing the ratio between the red and blue color channels in digital 

images. This method leverages the fundamental optical properties of the Earth's atmosphere to 

distinguish between clear sky and cloudy conditions [23]. In this technique, it is well-established 

that clear sky conditions scatter blue light more effectively than they do red light, thus affecting 

their intensities in the images. On the other hand, clouds scatter both blue and red light roughly 

equally. As a result, the RBR method calculates the ratio of red (denoted as 𝐼𝑟) to blue channel 

(denoted as 𝐼𝑏) intensities in the images. This ratio is used as a key indicator for cloud detection. 

The RBR is expressed mathematically as:  

𝑅𝐵𝑅	 =
	𝐼𝑟
𝐼𝑏  

 

However, the RBR is not uniform across the entire sky hemisphere in clear conditions. Several 

factors contribute to this non-uniformity. One significant factor is the presence of aerosols in the 

atmosphere and the effects of air mass (AM). Due to the size distribution of aerosols relative to 

the wavelength of visible light, the scattering of light by aerosols exhibits a weaker wavelength 

dependence than scattering by gas molecules. Consequently, this leads to scattered light 

appearing whiter, which translates to a reduction in the saturation of the blue color channel [24]. 

This phenomenon becomes particularly evident near the horizon, where the relative optical air 

mass increases and more aerosols are present along the optical path through the atmosphere. 

Additionally, in the circumsolar region (around the sun), forward scattering effects of aerosols 

contribute to a whiter appearance. 
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The Boundary Recall metric quantifies the superpixel segmentation algorithm's ability to 

accurately capture the boundaries between different regions in an image. The Boundary Recall 

is defined as the number of correctly detected boundaries (True Positivesbnd) over the sum of 

correctly detected boundaries and missed boundaries (False Negativesbnd). 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝑅𝑒𝑐𝑎𝑙𝑙	 =
(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠*+,)

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠*+, + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠*+,)
 

Recall, also known as True Positive Rate or Sensitivity, measures the proportion of true positive 

superpixels (True Positivessp) correctly identified by the segmentation algorithm. It represents 

the algorithm's ability to capture all the relevant superpixels in the image. 

𝑅𝑒𝑐𝑎𝑙𝑙	 =
H	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠&'I

H𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠&' + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠&'I
 

Precision quantifies the algorithm's accuracy in correctly assigning labels to the superpixels. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	𝑇𝑟𝑢𝑒
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠&'

H𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠&' + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠&'I
 

The F1-Score is a harmonic mean of Precision and Recall, providing a balanced measure of the 

algorithm's accuracy. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒	 = 	2	 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑅𝑒𝑐𝑎𝑙𝑙) 

The F1-Score ranges from 0 to 1, with a higher value indicating better segmentation accuracy. In 

order to determine true and false positives and negatives, a ground truth must be available for 

every image analyzed. We have analyzed all images manually, identifying clouds, clear sky, and 

the Sun. The images analyzed comprise a wide variety of weather conditions. 

 

Results 

This section presents the findings obtained from employing various superpixel techniques with 

different parameter configurations across diverse weather conditions. The analysis of the 

results encompasses evaluation metrics such as precision, recall, and F1-score values. Through a 

comprehensive examination of the outcomes, numerous patterns and observations emerge, 

providing valuable insights into the performance of these techniques as an automatic manual 

labeling technique. 
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While we have analyzed a large dataset for the purpose of clarity, we selected four different 

cloud covers to compare the effectiveness of the three superpixel segmentation algorithms, i.e., 

15%, 60%, 80%, and 100% (overcast). These are depicted in the corresponding Figure 13. 

The segmentation was carried out across various settings, allowing us to investigate the impact 

of varying parameters, including the number of segments (100, 200, 250) and compactness (10, 

20, 30). Features were subsequently extracted from these superpixels, encompassing essential  

Figure 13. Illustration of SLIC superpixel segmentation results with various segment numbers and 
compactness levels. 
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attributes such as mean color, mean intensity, and region size. Notably, we also calculated the 

Red/Blue (R/B) ratio as an additional feature. The image was then thresholded using Otsu's 

method to derive an automatic threshold value, as illustrated in Figure 14. 

Table 1 summarizes the performance of the SLIC algorithm under different cloud cover 

conditions, showing precision, recall, F1-score, and accuracy percentages. Table 2 details the 

performance for the other methods. 

Figure 14. Comprehensive cloud recognition process: (A) original segmented image, (B) red-blue ratio 
histogram representation, (C) scatter plot of Intensity vs. Cluster Label - Higher intensity corresponds 
to Cluster Label 3, representing the sun, and (D) final cloud detection process, with cluster numbers 

added in the image. 

A 
B 

C D 
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Table 1. Evaluation Metrics for the Segmentation Based SLIC Algorithm for Different Weather Conditions. 

Cloud cover (%) Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

15 81.47 80.78 81.09 80.78 

60 84.52 80.85 72.29 80.85 

85 66.13 64.31 64.94 64.31 

100 71.58 71.37 71.29 71.37 

 

Table 2. Evaluation Metrics for the Segmentation Based RBR, Watershed and Felzenswalb Algorithms for 

Different Weather Conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBR 

Cloud cover (%) Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

15 27.27 27.27 27.27 27.38 

60 33.55 33.55 33.55 34.21 

85 29.67 29.67 29.67 19.70 

100 97.41 97.41 97.41 97.42 

Watershed 

Cloud cover (%) Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

15 66.43 66.43 66.43 64.31 

60 35.21  35.21 35.21 41.96 

85 47.54 47.54 47.54 45.49 

100 42.84 42.84 42.84 38.04 

Felzenswalb 

Cloud cover (%) Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

15 77.8 77.2 77.4 77.2 

60 56.0  58.7 56.1 58.7 

85 80.1 77.1 78.1 77.1 

100 49.6 46.1 46.7 46.1 
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The SLIC algorithm demonstrated consistent performance across various weather scenarios. It 

achieved impressive accuracy and remarkably high precision, leading to a very high F1-Score, 

and showcased its proficiency in delineating cloud boundaries, as evident from its boundary 

recall. Also, both the Watershed and Felzenswalb superpixel segmentation performed well in 

clear sky and overcast weather conditions but encountered challenges in fully cloudy scenarios. 

The RBR method displayed varying performance across different weather scenarios. While it 

excels with remarkable accuracy (97.42%) and high precision (97.41%) in overcast conditions 

with 100% cloud coverage, it faced substantial challenges in clear sky and partly cloudy 

scenarios.  

To summarize, superpixel-based SLIC segmentation demonstrated remarkable consistency and 

adaptability across various weather scenarios, making it the most suitable choice for cloud 

detection in the context of short-term solar forecasting. This comparative analysis not only 

highlights the effectiveness of these segmentation techniques but also underscores the 

importance of selecting the most appropriate method based on the specific weather conditions 

encountered. This contributes to more accurate short-term solar forecasting and enhances the 

efficient utilization of solar energy, thereby addressing the crucial need for reliable cloud 

detection in the context of optimizing solar energy integration into the power grid. 

 

3.2.2.  Analysis of Cloud Motion and 2D Shadow Mapping 
This second part of our research is dedicated to enhancing the accuracy of Photovoltaic (PV) 

output forecasting, deploying two of more sky cameras and a machine learning algorithm 

combined with physical modeling. Our goal is to improve the forecasting of solar irradiance on 

an intra-hour scale. This part Is guided by two research questions: 

1. What is the efficacy of determining ground-level 2D shadow fields using a network of sky 

cameras? 

2. How does the accuracy of this 2D projection method compare against other existing 

techniques? 

In this study, we aim to provide a comprehensive overview of the methodologies and key 

findings from our research.  
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At the core of our approach is an algorithm designed to process images for identifying cloud 

blocks, determining cloud base height, tracking cloud motion, determination of 2D cloud 

shadow fields and evaluating transmittance. These processes converge to create a Global 

Horizontal Irradiance (GHI) map over an area of 10x10 km2, capable of forecasting up to 30 

minutes in advance. Results were validated using GHI data from CAMS (Copernicus Atmosphere 

Monitoring Service) [25] and compared with a smart persistence approach.  

 

Methodology 

The methodology outlined in this research is shown in Figure 15.  First, data is collected from sky 

cameras located in Almería, Spain, due to a temporary limitation in accessing the camera data 

from the Netherlands. This was part of a collaborative effort within IEA PVPS Task 16. Location 

details were 37.091549° N, -2.363556° E for camera #1 (ASI1) and 37.095253° N, -2.354785° E 

for camera #2 (ASI2), at a distance of 880.2 m. To assess the algorithm's robustness, the chosen 

data will come from a day exhibiting a mix of sky conditions. This imaging data is augmented 

with irradiance data from CAMS, which is accessed via PVlib functions [26]. The CAMS data 

offers irradiance values with a temporal resolution of one minute based on Numerical Weather 

Prediction models. 

Based on earlier work on sky-images based forecasting [27-30], the Support Vector Machine 

(SVM) method was selected [31]. With this method, the connected component and manual 

division algorithms delineate and segregate cloud blocks, which are crucial for analyzing cloud 

base height and motion. The precise identification of cloud blocks is further refined by 

implementing viewing angle limitations and a solar mask, allowing for more accurate cloud base 

height and movement analysis. This pre-processing and feature extraction allow for the next 

steps: cross-correlation for cloud motion assessment and, ultimately, the determination of 

irradiance maps and forecasts. 
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Image pre-processing and cloud block detection: 

The process of identifying cloud pixels can begin once irrelevant pixels have been masked. The 

distinction between cloud and clear sky is based on the scattering properties of light in the 

atmosphere. The RGB values captured in the images from the cameras are key to differentiating 

these two. With developed methodologies, thresholds applied to these color channels enable 

the discernment between cloudy and clear sky pixels where the R/B ratio can be particularly 

indicative. 

The All-Sky Imagers lack spectral and neutral density filters and respond variably to different 

lighting conditions. This response is contingent upon the camera model, necessitating manual 

and often complex calibration for each setup. To address this, adaptive thresholding through 

Figure 15. An overview of the methods and algorithm that are applied. 
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supervised machine learning techniques has been employed, where classifiers such as k-

nearest-neighbors, binary decision trees, and neural networks have been utilized for cloud 

classification [32-35]. 

The binary classification method by Peng et al. [32] has been adapted for this algorithm, which 

distinguishes pixels using six features based on the R/B ratio. The first four features are derived 

directly from the pixel values themselves: Red Value, Blue Value, Green Value, and R/B Ratio. 

The remaining two features consider the neighboring pixels: the fifth feature uses the Laplacian 

of the Gaussian across a 7x7 pixel area, useful for edge detection, and the sixth calculates the 

standard deviation of the luminance in a similar area, representing the pixel's average contrast 

with its surroundings. 

The classifier in use, a Support Vector Machine (SVM), treats each pixel as a multi-dimensional 

vector, where each dimension corresponds to a pixel feature. The SVM constructs a hyperplane 

that maximizes the margin between two classes of pixels—cloud or sky—thereby minimizing the 

influence of outliers. This optimization also accounts for errors and uncertainties inherent in the 

manually labeled training data [32]. 

Training of the SVM requires pixels from training photos to be labeled as cloud or sky, forming a 

binary image. These binary images, alongside the original photos, calibrate the SVM through 

supervised learning. An example of such a training photo and its corresponding labeled binary 

image is demonstrated in Figure 16A and 16B. Upon successful identification of cloud pixels, the 

cloud masks are transformed into cloud blocks, following the approach by [32]. This conversion 

is illustrated in Figure 16C, where individual cloud entities within the mask are given bounding 

boxes. Smaller cloud objects are filtered out to avoid unnecessary noise and to focus on larger 

blocks significant for analysis. These larger blocks are then subdivided into smaller sections, 

facilitating more precise tracking of their movement and position. The resulting cloud blocks are 

the foundation for the subsequent analysis stages. 
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The second step involves confining viewing angle to reduce errors at low viewing angles that 

could otherwise distort cloud positioning and appearance. Objects within the camera's field of 

view, particularly the sun, are then identified and masked to prevent misclassification during the 

cloud detection process, see Figure 17. 

 

 

 

In the third step of the cloud analysis methodology, the primary objectives are to ascertain the 

Cloud Base Height (CBH) and Cloud Motion of cloud blocks. This is achieved by linking cloud 

blocks across different images, a task accomplished through the application of Zero Mean 

Normalized Cross Correlation (ZMNCC). ZMNCC is a template-matching technique that scans a 

cloud block across another photo to identify the best matching area, effectively tracking the 

Figure 16.  (A) image to be analysed by SVM, (B) cloud mask as identified by the SVM, (C) 
corresponding cloud blocks that were determined. 

Figure 17. (A) original image, (B) sun mask in yellow that is used to mark the area close to the sun, and 
combined image. Image is aquired at KNMI site Cabauw. 
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cloud from one image to the next. In this technique, cloud blocks are interlinked using the 

method by Peng et al. [32]. ZMNCC can be mathematically expressed as: 

𝑅 =
1
𝑛L

1
𝜎-𝜎.

H𝑓(𝑥, 𝑦) − 𝜇-I
/,1

(𝑡(𝑥, 𝑦) − 𝜇.) 

where	𝑓(𝑥, 𝑦)	denotes the image to be scanned for template 𝑡, 𝜇- and 𝜎- are the mean and 

standard deviation of 𝑓(𝑥, 𝑦), 𝜇. and 𝜎. are the mean and standard deviation of 𝑡(𝑥, 𝑦), and	𝑛 is 

the number of template pixels 𝑡(𝑥, 𝑦). The template images, or cloud blocks, are used to scan 

the image. The maximal value of 𝑅 indicates the optimal match location between the template 

and the scanned image. This method is vital for understanding cloud dynamics and contributes 

significantly to the accuracy of the solar forecasting algorithm. 

By employing two cameras and utilizing ZMNCC, the CBH of the cloud blocks is computed 

through triangulation methods. This triangulation is visualized in Figures 18 and 19. The 

geometry involved in this method is crucial; it relies on the azimuth and altitude angles of a 

cloud block as observed from the locations of the two cameras. Initially, the azimuth angles (θ1, 

θ2) captured by both cameras are used to calculate the angles α, β, and γ within the triangle 

formed between the two cameras and the cloud block.  

 

Figure 18. The geometry used for determining the CBH. Camera #1 is located at position A, and 
camera #2 is located at position B. 
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Once the cloud blocks have been interlinked between photos from the dual-camera setup, 

triangulation techniques are employed to calculate the CBH. This involves using the known 

distance between the cameras as a base and applying the observed angles to triangulate the 

position of the cloud. As there are two cameras, we can determine CBH using camera #1 as 

main camera or #2. Following the CBH calculation, cloud motion is determined by analyzing two 

consecutive photos from the same camera, which reveals the cloud's displacement over time, as 

seen in Figure 19. This process not only measures the distance clouds travel but also provides 

insight into the speed and direction of cloud movement, which are vital parameters for 

forecasting solar irradiance. 

 

Determining and Forecasting the Irradiance Map: 

Following the calculation of cloud base height, the next critical task is to construct an irradiance 

map, a two-step process that starts with creating a binary shadow map to pinpoint cloud 

shadow locations. This step is grounded in the geometry illustrated in Figure 20, which guides 

the determination of the cloud's ground position (shadow). With the cloud's position and CBH 

known, the next phase involves calculating the ground distance to its shadow, using the sun's 

elevation angle, and then pinpointing the shadow's location relative to the cloud based on the 

sun's azimuth angle. The SVM-generated cloud mask is instrumental in shaping the shadow on 

Figure 19. An illustration of the underlying geometry that is exploited to determine the cloud motion. 
(x, y) is the current ground position of the cloud, and (xʹ, yʹ) is the past ground position of the cloud. 
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the map, with each cloud pixel being evaluated for its shadow counterpart, ensuring consistency 

in CBH across all pixels within a cloud block. 

 

The construction of the binary shadow map paves the way to the second step: calculating the 

map's irradiance levels, i.e., a map of GHI. The Clear Sky Model provides the baseline for these 

calculations [12, 36]. The actual irradiance is determined by modifying the clear sky irradiance 

based on cloud transmittance, where the luminance of cloud blocks informs the degree of 

transmittance, following a simple linear relationship with the maximum luminance set at a value 

of 255. With the cloud positions and motions known, short-term forecasts of cloud and sun 

positions are generated, allowing for the prediction of irradiance maps for intervals ranging 

from 1 to 30 minutes. The generation of irradiance maps for varied time intervals necessitates a 

thorough analysis of cloud movements and positions over time. By tracking these changes, the 

model is capable of predicting future cloud locations for upcoming intervals. This predictive 

information, coupled with the baseline data from the Clear Sky Model, allows for the nuanced 

adjustment of irradiance levels to reflect the anticipated cloud cover at each specific interval. 

Consequently, a dynamic irradiance map is produced, offering a time-sensitive reflection of the 

solar energy availability. 

 

Figure 20.The geometry that is used for determining the locations of cloud shadows on the ground. 

 



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

35 

Validation: 

The forecast is validated against irradiance data from the CAMS database. Root Mean Square 

Error (RMSE) and the Mean Square Error (MSE) are used to assess accuracy. The results are also 

compared against a smart persistence approach, which is a simple and naïve approach, not 

relying on ASI images. The forecasting algorithm is compared against the smart persistence by 

determining the forecast skill (FS). The following equations define RMSE, MSE and FS: 

𝑅𝑀𝑆𝐸 = S
1
𝑛L

(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)%
+

234

 

𝑀𝑆𝐸 =
1
𝑛L

(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)%
+

234

 

𝐹𝑆 = 1 −
𝑅𝑀𝑆𝐸5#6"$2.78
𝑅𝑀𝑆𝐸9)$&2&.)+!)

 

Results: 

First, SVM results are evaluated for its efficacy in cloud pixel identification. Second, the 

outcomes related to the Cloud Base Height and Cloud Motion determination are detailed. And 

third, the results obtained from the irradiance map and its subsequent forecasts are 

investigated. 

Cloud Identification using SVM 

The performance of the SVM in identifying cloud pixels is illustrated in Table 3. The accuracy of 

true cloud detection, while significantly lower than the benchmark set by [32] is 

counterbalanced by a higher success rate in true sky detection. This discrepancy is attributed to 

the limited dataset used, comprising only 22 fully cloudy images captured on a day 

characterized by predominantly overcast skies. The confusion matrix presented in Table 3 lays 

out these details, demonstrating the SVM's strengths and weaknesses in distinguishing between 

cloud and sky pixels. 

Table 3. Performance of the SVM for Cloud Pixel Identification 
 Manual Detection Cloud Manual Detection Sky 

SVM Cloud 71.9% 28.1% 

SVM Sky 7.1% 92.9% 
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Further scrutiny of the SVM's performance highlights a particular challenge faced during times 

of sunrise and sunset. These periods appear to affect the SVM's accuracy, likely due to the 

unique lighting conditions present at these times. An illustrative example is given in Figure 21, 

showcasing photos taken shortly after sunrise and just before sunset, alongside the 

corresponding cloud masks generated by the SVM. Table 4 shows the SVM's performance 

during these transitional light conditions, with sunrise and sunset data revealing a marked 

decline in cloud detection efficacy, underscoring the need for algorithmic adjustments to handle 

the varying lighting conditions encountered throughout the day. 

 

 

Figure 21. (A) image taken right before sunset, (B) corresponding cloud mask created by the 
SVM, (C) image taken right after sunset, (D) corresponding cloud mask. Images are aquired at 

KNMI site Cabauw. 
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Table 4. SVM Performance at Sunrise and Sunset 
 Manual Detection Cloud Manual Detection Sky 

Sunrise cloud detection   

SVM Cloud 19.1% 81.9% 

SVM Sky 1.6% 98.4% 

Sunset cloud detection   

SVM Cloud 17.1% 82.9% 

SVM Sky 2.2% 97.8% 

 

Cloud base height 

The analyzed images show distributions of CBHs, see Figure 22. Differences are seen from either 

using camera #1 or #2 as main camera. Overal, CBH values range from 0 to 12,500 meters, 

which can be expected. Average CBH is about 2000m. Camera #1 readings align with this 

expected range 97.4% of the time, indicating a high degree of reliability in its measurements. On 

the other hand, Camera #2 demonstrates a lower congruence, with only 70.5% of its readings 

falling within the anticipated range. Inspection of the image data from Camera #2 revealed 

partial data corruption, which likely influenced its performance. This issue was only identified 

towards the end of the research, precluding the possibility of re-evaluating the dataset. 

 

 

 

Figure 22. Distribution of CBH determined from camera #1 and #2. (A) shows CBH using camera #1 as 
the main camera, and (B) shows CBH using camera #2 as the main one. 
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Cloud Motion: 

The cloud motion analysis, a crucial aspect of understanding atmospheric dynamics, shows 

notable differences between the data captured by two cameras. Literature benchmarks the 

expected cloud motion (speed) to range between 0 and 35 m/s. From the measurements 

obtained, Camera #1 demonstrated a high degree of accuracy, with 91.2% of its readings falling 

within this expected range. However, for camera #2, only 67.2% of its readings within the 

anticipated motion parameters. 

Scatter plots and histograms for both cameras offer a visual representation of these findings as 

represented in Figure 23. The dataset, encompassing data from a single day, showed a 

consistent direction in cloud movement. This uniformity is particularly evident in the histogram 

from Camera #1, which displays a pronounced peak at 3-5 m/s, corroborating the theory that 

clouds in a given area are likely to move in a similar direction due to uniform wind conditions. 

Figure 23. Scatter plots of the estimated cloud motion for camera #1(A) and camera#2 (B). North is 0 
degrees. Histograms for the speed of the clouds for camera #1(C) and camera#2 (B). 



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

39 

This is further reflected in the fact that individual cloud blocks, often part of the same larger 

cloud formation, exhibited similar speeds. 

The results from Camera #2, while capturing the same peak in cloud speed, presented a more 

even distribution across different speeds, diverging from the focused peak observed in Camera 

#1's data. Given the dataset's temporal limitation to one day, a narrower distribution would 

typically be more indicative of actual conditions, as clouds subjected to the same wind patterns 

tend to move at similar speeds. The broader distribution from Camera #2 suggests anomalies, 

which could be attributed to corrupted images. 

The directionality of cloud motion was consistent across both cameras, showing two notable 

peaks in the histograms, one primary and one secondary, directly opposite the first. This 

phenomenon might be explained by the mathematics involved in the algorithm, where 

trigonometric functions prone to discontinuities require adjustments, sometimes involving the 

addition or subtraction of π to maintain accuracy in the computations. 

While Camera #1 provided results that closely matched expected cloud speeds and directions, 

the performance of Camera #2 was hindered by data quality issues, impacting its reliability. The 

consistent direction of cloud movement and the primary speed peak support the validity of the 

cloud motion measurements from Camera #1, reinforcing its data's usefulness in contributing to 

accurate atmospheric analysis and forecasting. 

 

Irradiance map and forecast: 

The performance of the irradiance forecast algorithm across varying forecast horizons is 

analyzed, with the algorithm displaying commendable accuracy in comparison to literature 

benchmarks. It is found that the errors decrease with longer forecast times, which contrasts 

with literature that typically anticipates increased error over longer periods. This anomaly is 

likely due to the limitations of the CAMS data, which may lack the necessary spatial and 

temporal resolution to validate the method effectively. 

The algorithm's irradiance predictions (shadow maps) are mapped across a 10x10 km2 area, 

with a resolution of roughly 10x10 meters, as shown in the example of the irradiance map in 

Figure 24. The irradiance forecasts, plotted alongside CAMS-determined irradiance, reveal fewer 
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and shorter periods of shading than expected, which becomes increasingly evident with 

forecasts beyond 15 minutes. At these longer intervals, the clouds initially detected move 

beyond the frame of view, and upcoming clouds that could create shadows are not yet visible, 

resulting in almost no shading periods observed. 

The accuracy of the irradiance predictions is quantified through MSE, RMSE, and FS. Camera #1 

shows 0-minute RMSE of 50.66 W/m2, and Camera #2 showing an RMSE of 80.32 W/m2. The 

results, summarized in a Table 5, 6 and 7, reveal that the algorithm maintains or improves 

performance at extended forecast horizons compared to persistence, which defies the typical 

expectation of diminishing accuracy. Figure 25 details GHI based on CAMS data, as well as 

forecasts for lead times of 0 – 30 minutes. 

 

 

 

Figure 24. A relative irradiance map, as generated by the algorithm. A value of zero reflects zero 
irradiance, a value of 1 reflects maximum irradiance, which is equal to the clear sky GHI of that 

moment, as determined by the clear sky model. 
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Table 5. The Mean Squared Error ((W/m2)2) and Root Mean Squared Error (W/m2) (also expressed in 
percentage of the highest measured value) of the irradiance map predictions at the location of the 

camera, when determined by the algorithm. 
 

Algorithm Camera #1 Camera #2 

Forecast horizon MSE RMSE MSE RMSE 

0 min 2566.7 50.7 (8.3%) 6451 80.3 (13.2%) 

1 min 2166.3 46.5 (7.6%) 4424.9 66.5 (10.9%) 

5 min 1618.0 40.2 (6.6%) 5126.0 71.6 (11.8%) 

15 min 1518.6 39.0 (6.4%) 1519.1 39.0 (6.4%) 

30 min 1518.6 39.0 (6.4%) 1804.9 42.5 (7.0%) 

 
Table 6. MSE ((W/m2)2) and RMSE (W/m2) (also expressed in percentage of the highest measured value) 
of the irradiance map predictions at the location of the camera, when determined by smart persistence. 

Smart persistence Camera #1 Camera #2 

Forecast horizon MSE RMSE MSE RMSE 

1 min 17.0 4.1 (0.7%) 17.0 4.1 (0.7%) 

5 min 358.3 18.9 (3.1%) 358.4 18.9 (3.1%) 

15 min 1881.8 43.3 (7.1%) 1882.4 43.4 (7.1%) 

30 min 2285.1 47.8 (7.8%) 2285.8 47.8 (7.8%) 

 

Table 7. FS of the irradiance map predictions at the location of the camera. 

 Camera #1 Camera #2 

Forecast horizon FS FS 

1 min -11.4 -18.6 
5 min -1.46 -2.5 

15 min 0.07 -0.65 
30 min 0.18 0.18 
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In conclusion, this research aimed to advance the forecasting of solar irradiance on an intra-

hour timescale using two All Sky Imagers (ASIs). The study hinged on the development and 

implementation of a machine learning algorithm for processing imagery, identifying cloud 

blocks, and subsequently determining cloud base height, cloud motion, and transmittance to 

Figure 25. (A) GHI as determined by CAMS for camera 1. (B)shows the GHI as determined by the 
algorithm, for 0 min lead time. (C), (D), (E), and (F) show the GHI forecasts with lead times of 1, 5, 15, 

and 30 minutes, respectively. 
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create an accurate irradiance map spanning 10x10 kilometers and providing forecasts up to 30 

minutes. 

The algorithm's performance, assessed over a day with variable sky conditions, initially appears 

consistent with other established methods documented in literature. Also, our targets of a 

relative root-mean-square-error (rRMSE < 10%) is met (see Table 6), while that of the forecast 

skill (FS>20%) is nearly met (see Table 7).  It was observed that, while the smart persistence 

approach surpasses the algorithm in the very short-term forecasts (less than 10 minutes), the 

machine learning approach demonstrates improved accuracy for longer timescales. This 

suggests the potential of machine learning algorithms in enhancing the utility of ASIs for solar 

irradiance mapping. 

A critical observation from the research is that the limited dataset and possible shortcomings in 

data quality are principal factors contributing to lower accuracy levels in the algorithm's 

performance. Addressing these limitations could significantly refine the forecasting capabilities 

of the model. 

As a future direction, networking multiple ASIs to enrich the dataset and applying the refined 

algorithm promises to yield a more robust application. This progression is expected to 

contribute substantively to the operational implementation of photovoltaic (PV) power systems, 

optimizing their performance in accordance with real-time solar irradiance variations influenced 

by cloud movements. 

 

3.2.3. Innovative Method for Cloud Base Height Determination 
At the core of short-term solar forecasting is the accurate estimation of CBH using sky imagers, 

a critical parameter in determining the speed and subsequent positions of cloud shadows on the 

ground [37,38]. While various methods to estimate CBH exist, ranging from satellite to 

ceilometric measurements, each comes with its limitations [39-42]. A recent approach 

circumvents the computational intensity of traditional methods by narrowing the search area in 

image analysis [43]. 

This section explores how epipolar geometry can be used to optimize CBH estimation. The 

theoretical foundation and the operational potential of this approach may lead to an important 

improvement in our ability to forecast solar irradiance. 
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Proposed method 

The heuristic method, essential for CBH identification in sky imaging, is an advanced approach 

combining image processing and geometrical analysis. 

Epipolar geometry states that in the case of two cameras whose locations and angles are known 

with regards to an object, taking a photograph of that bject sufficient information is available to 

exactly determine the position of the object in (real-world) 3D space. Additionally, if the object’s 

position on the first image is known, its possible location on the second image is restricted to a 

line on that image, known as the epipolar line [44]. This relationship can be formalized using the 

fundamental matrix F [45]:  

𝑝%:𝐹𝑝4 = 0 

Here, 𝑝4 and 𝑝% are the locations of the same real-world object on camera 1 and 2, respectively. 

In particular, this implies that 𝐹𝑝4 defines the epipolar line of point 𝑝4 in image 2, as this line 

will contain those coordinate vectors  𝑝% in image 2 that satisfy the above equation. Notably, 

the fundamental matrix is constant for a pair of two cameras (provided that they are not moved 

or turned with respect to each other) and hence it can be pre-computed. In the context of sky 

imaging for CBH determination, this implies that the computational effort of matching cloud 

sections on two images can be considerably reduced (searching along a line rather than in an 

entire image) at almost no cost, as the fundamental matrix is pre-computed. In addition, 

software packages such as OpenCV that implement efficient algorithms to determine F based on 

an image pair from two cameras are readily available [46].  

 

Once a cloud block in the image of camera 1 has been identified, its epipolar line in the image of 

camera 2 can be calculated with low effort. However, once this happened, the exact cloud block 

needs to be found in camera 2’s image. To this end, in the approach used by Nguyen and Kleissl 

[43] correlation coefficients ρ of the cloud block in image 1 and all cloud blocks located on the 

epipolar line of camera 2 are computed. The correlation coefficient ρ is based on the correlation 

of the saturation levels of the pixels located at the same position of image 1 and image 2. The 

cloud block that maximizes ρ is then identified as the right one.  
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To reduce the computational effort even further, it is possible to devise heuristic schemes that 

have the goal to decrease the number of correlation coefficients ρ that need to be calculated 

even beyond what is achieved through computing the epipolar line. Here, the feasibility of one 

such heuristic scheme has been investigated. Its core assumption is that in most cases, the CBH 

of one cloud block will not be extremely different to those next to it. Thus, this scheme does not 

foresee the calculation of all correlation coefficients across the epipolar line, but only of those 

related to cloud blocks that would correspond to a CBH close to the one that was obtained for 

the previously computed cloud block (assuming that this cloud block was adjacent to the 

current one). If adjacent cloud blocks indeed to have similar CBHs (particularly if they belong to 

the same cloud), then this scheme is expected to lead to another substantial reduction in 

computational effort, particularly for in the context of an eight-camera setup. The detailed 

workflow for the first cloud block - which shows most fundamental concepts of the heuristic 

method - is shown in Figure 26, and the scheme for cloud blocks 2 and beyond is shown in 

Figure 27. 

 

Key steps in implementing this method include: 

1. Computation of the Fundamental Matrix: Utilizing OpenCV's `findFundamentalMat` function, 

the fundamental matrix F is estimated from two images of the same scene taken by different 

cameras. This matrix is crucial for correlating points between the two images. 

The fundamental matrix was computed and was found to be: 

𝐹 = W
2.99	10;< 5.90	10;= −1.67	10;%
5.21	10;= −6.94	10;< 5.37	10;%
1.57	10;% −4.71	10;% 1

^ 

 

2. Epipolar Line Calculation: The computation involves multiplying F with the coordinates of the 

cloud block's center pixel in the first image. This step is fundamental in narrowing down the 

search area in the second image. 
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Figure 26. CBH determination workflow for the first cloud block. 
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A Workflow Schemes for CBH determination with reduced computational load

Figure 7: CBH determination workflow for the second and later cloud blocks.

15

Figure 27. CBH determination workflow for the for the second and later cloud blocks. 
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3. Identifying Corresponding Points for Prior CBH: By calculating the intersection of the epipolar 

line with a circle representing the prior CBH radius, the matching point in the second image is 

identified. This step uses optimization techniques to ensure accuracy. 

4. Cropping of the Second Image: To enhance efficiency, the second image is cropped around 

the identified point, creating a smaller search area for template matching. 

5. Acceptance Criteria for Heuristic Results: The algorithm employs correlation thresholds and 

feasibility checks for CBH to determine the validity of results. This includes discarding 

implausible CBH values and relying on full template matching if needed. 

6. Computational Effort Evaluation: While not directly impacting the method's execution, 

understanding the computational savings offered by the heuristic approach is crucial. This is 

assessed by comparing execution times. 

In the optimization and evaluation phase, the method's performance is gauged based on accuracy 

and computational efficiency. The main parameters—correlation threshold and cropping 

dimensions—are experimentally optimized to balance accuracy with reduced computational 

demands. 

 

In section 3.2.2, CBH was determined based on image pairs from two imagers. As no ceilometers 

or similar pieces of equipment were used for a non-stereographic measurement of CBH, the 

values obtained there are used here as the a-priori true values. This method has been reported 

to producing accurate results [43]. It is expected that implementing the heuristic method leads to 

a (very) moderate reduction in CBH estimation accuracy while allowing for a significant reduction 

of computational power needed. Based on the exact results, contexts in which applications of the 

heuristic method are appropriate can be identified.  

 

Results 

The heuristic method was executed under variation of two different process parameters: The 

number of pixels added to the cloud block at all sides (step 4), and the threshold value that the 

maximum correlation point needs to reach in order to accept the template match (step 5). 
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Values between 25 and 300 pixels were tried for the former variable, and values between 0.50 

and 0.95 for the latter variable. Results are shown in Table 8. 

 

Table 8. Most important result characteristics when applying the heuristic method for CBH 

determination. Column Heur. Scheme: share of cloud blocks for which the heuristic scheme was used, 

column CBH feasible: fraction of times the resulting final CBH was reasonable (above 700 m and below 

8500 m), Column Non-heur. Check: share of cloud blocks for which the result of the heuristic method 

showed the same result as a non-heuristic calculation, Column Rel. time saving: total relative time saved 

when using the heuristic rather than the full method for all images. 

 

 

Add. pixels Threshold Heur. scheme CBH feasible Non-heur. check Rel. time saving

25 0.50 0.09 0.64 0.92 0.04
25 0.60 0.07 0.65 0.94 0.02
25 0.70 0.04 0.66 0.97 -0.00
25 0.80 0.03 0.67 0.98 -0.02
25 0.90 0.01 0.68 1.00 -0.03
25 0.95 0.00 0.68 1.00 -0.04

50 0.50 0.24 0.60 0.84 0.19
50 0.60 0.21 0.62 0.87 0.16
50 0.70 0.17 0.64 0.91 0.11
50 0.80 0.11 0.66 0.97 0.07
50 0.90 0.08 0.68 0.99 0.03
50 0.95 0.04 0.68 1.00 -0.01

100 0.50 0.51 0.51 0.77 0.45
100 0.60 0.45 0.56 0.83 0.38
100 0.70 0.41 0.59 0.87 0.34
100 0.80 0.35 0.63 0.92 0.29
100 0.90 0.21 0.68 0.99 0.15
100 0.95 0.10 0.68 1.00 0.04

150 0.50 0.63 0.53 0.76 0.54
150 0.60 0.59 0.55 0.79 0.50
150 0.70 0.52 0.60 0.86 0.43
150 0.80 0.44 0.65 0.93 0.35
150 0.90 0.27 0.68 0.98 0.19
150 0.95 0.12 0.68 1.00 0.03

200 0.50 0.65 0.58 0.81 0.54
200 0.60 0.62 0.60 0.84 0.50
200 0.70 0.54 0.64 0.92 0.43
200 0.80 0.49 0.68 0.96 0.36
200 0.90 0.32 0.68 0.99 0.22
200 0.95 0.13 0.68 1.00 0.03

300 0.50 0.43 0.66 0.90 0.28
300 0.60 0.41 0.67 0.92 0.26
300 0.70 0.39 0.67 0.94 0.24
300 0.80 0.34 0.69 0.98 0.19
300 0.90 0.24 0.68 0.99 0.09
300 0.95 0.09 0.68 1.00 -0.05

Table 1: Most important result characteristics when applying the heuristic method for CBH determination. Column Heur.
Scheme describes the share of cloud blocks for which the heuristic scheme was used, column CBH feasible gives the share
of times the resulting final CBH was reasonable (above 700 m and below 8500 m). Column Non-heur. check shows the
share of cloud blocks for which the result of the heuristic method showed the same result as a non-heuristic calculation,
and Rel. time saving is the total relative time saved when using the heuristic rather than the full method for all images.

9
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The following observations can be made: 

• The area added to the cloud block in image 2 should not be too small. Otherwise, the 

prior CBH needs to be extremely close to the actual CBH for the actual matching point to 

be included in the cropped version of image 2. When adding only 25 pixels, the heuristic 

scheme almost never yields a result and the CBH needs to be computed using the non- 

cropped image 2 after all. For this reason, adding very few pixels in combination with a 

low threshold value can even increase the overall computational workload of the 

algorithm as first, the heuristic scheme is applied but then in almost all cases the full 

calculation still needs to be made. 

• Using a too low correlation threshold results in false-positive CBH estimations. The 

column Non-heur. check in Table 8 shows the share of cloud blocks for which the result 

yielded by the heuristic method was the same as when using a non-cropped image 2 for 

template matching all the time. This effect is most extreme when using medium-sized 

crops for image 2: When adding 100 or 150 pixels to the cloud block, about 1 in 4 cases 

yield a false-positive result with a correlation threshold of 0.5. These false-positives do 

yield a drastic reduction of computation time (around 50 %), but at a high accuracy cost. 

When increasing the number of pixels added, the false positives decrease likely due to 

the probability of the actual matching point being in the cropped image increasing. 

• Conversely, choosing a too high correlation threshold is also ineffective as this leads to 

false-negatives in the heuristic scheme leading to unnecessary computational effort of 

performing template matching on the entire image 2 while the match could have been 

made on the cropped image had the threshold been lower. 

• In general, while the accuracy of the heuristic scheme increases with increasing pixels 

added to the cloud block in image 2, it decreases again when adding very large pixel 

buffers: for all correlation thresholds, the heuristic scheme results in less accurate 

results when adding 300 pixels rather than 200 images. One reason for this issue might 

be the fact that when increasing the added pixels, the probability of part of the cropped 

version of image 2 being outside of the camera image increases. This naturally yields a 

lower correlation as intrinsically uncorrelated information is added. Figure 28 clearly 
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shows that when keeping the correlation threshold constant and progressively 

increasing the number of pixels added, the accuracy of the heuristic scheme decreases 

again after reaching a maximum precisely due to this effect. The accuracy of the overall 

heuristic method, on the other hand, increases as the infeasible results produced by the 

heuristic scheme in these cases trigger a full search of image 2 which eventually 

produced an accurate estimate. This effect is particularly strong for low correlation 

thresholds as using high correlation thresholds suppresses the false-positive 

identification of inaccurate CBHs.  

 

Overall, these results indicate that both the additional pixels and the correlation threshold 

should be chosen in a medium range, with too low or too large values being detrimental to 

either accuracy or computation time. This last point is corroborated by Figure 29: A clear 

downward-sloping trend can be discerned, implying that higher accuracy also leads to less 

computing time saved and vice versa. An optimum appears to be reached when adding 200 

Figure 28. A comparison heuristic scheme for different correlation thresholds versus the full heuristic 
method. For each threshold, the data points show different numbers of pixels added to the cloud block 

in image 2.  

Figure 3: A comparison heuristic scheme for different correlation thresholds versus the full heuristic method. For each
threshold, the data points show different numbers of pixels added to the cloud block in image 2.

the correlation threshold constant and progressively increasing the number of pixels added,
the accuracy of the heuristic scheme decreases again after reaching a maximum precisely
due to this effect. The accuracy of the overall heuristic method, on the other hand, increases
as the infeasible results produced by the heuristic scheme in these cases trigger a full search
of image 2 which eventually produced an accurate estimate. This effect is particularly
strong for low correlation thresholds as using high correlation thresholds suppresses the
false-positive identification of inaccurate CBHs.

• Overall, these results indicate that both the additional pixels and the correlation threshold
should be chosen in a medium range, with too low or too large values being detrimental to
either accuracy or computation time.

This last point is corroborated by Figure 4: A clear downward-sloping trend can be discerned,
implying that higher accuracy also leads to less computing time saved and vice versa. An optimum
appears to be reached when adding 200 pixels to the cloud block in image two and using a
correlation threshold of 0.8: In this case, the heuristic method produces the same results as the full
method in 96% of all cases, but comes with rather substantial computational savings of 36%.

4.1 Influence of Camera Height Difference

Figure 5 shows that even for larger camera height differences such as 50 m, the CBH deviation
is well below 10% if the Cloud Base Height is above 4000 m. Conversely, in the case of low-
hanging clouds (below 1000 m), not accounting for camera height differences can lead to massive
misestimations of CBH even in the case of moderate camera height differences (10 m).

10
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pixels to the cloud block in image two and using a correlation threshold of 0.8: In this case, the 

heuristic method produces the same results as the full method in 96% of all cases, but comes 

with rather substantial computational savings of 36%.  

 

The goal of this part of the research project twofold: Firstly, to establish whether it is possible to 

use heuristic considerations - assuming a prior CBH for each cloud block based on the previous 

cloud block’s CBH - to reduce computing energy required for CBH estimations in the context of 

solar nowcasting. Secondly, a working flow was proposed that should be able to accommodate 

this heuristic method in the context of a future eight-camera set-up to be used for solar 

nowcasting at the campus of Utrecht University. Based on the results of trying out the heuristic 

method on an existing pair of sky images, it is concluded that it is indeed possible to implement 

a heuristic scheme that results in less computation time (and consequently less energy 

consumption) for CBH estimation based on sky images taken by two imagers. Two important 

Figure 4: The trade-off between saving computational power and accuracy when using the heuristic method, for those
data points from Table 1 that achieved an accuracy with respect to the full method of at least 0.85.

On the other hand, Figure 6 shows that increasing the camera height difference has a linear effect
on CBH deviation for constant CBH. An increase in CBH leads to a less strong increase in CBH
deviation as the cameras’ distance grows larger.
It should be noted that even when the cameras are on on exactly the same height, CBH determina-
tion still comes with an uncertainty range as template matching might not yield the exact correct
cloud block in image 2. This is also evidenced by the fact that the CBHs obtained from image 1 and
image 2 respectively frequently are 50-150 m apart. Hence, it can be argued that an error of this size
- around 100 m - is negligible when caused by cameras at different heights as template matching
produces an error of similar size. For low clouds, an uncertainty of 100 m corresponds to 10-15%
CBH deviation; based on Figure 5, a rule of thumb could thus be that camera height difference can
be neglected if it is not larger than 10 m, and should be corrected for if it is larger.

5 Summary and Conclusion

The goal of this research project was twofold: Firstly, to establish whether it is possible to use
heuristic considerations - assuming a prior CBH for each cloud block based on the previous cloud
block’s CBH - to reduce computing energy required for CBH estimations in the context of solar
nowcasting. Secondly, a working flow was proposed that should be able to accommodate this
heuristic method in the context of a future eight-camera set-up to be used for solar nowcasting at
the campus of Utrecht University (cf. Figure 1 and 7); based on the results of trying out the heuristic
method on an existing pair of sky images, it was to be assessed whether this working flow could
work in practice.

11

Figure 29. The trade-off between saving computational power and accuracy when using the heuristic 
method, for those data points from Table 1 that achieved an accuracy with respect to the full method 

of at least 0.85.  



Final report SolFaSi, project number TEUE 1821406 

Public report   
 

53 

parameters were established: 1) the number of pixels added at each side of the template shape, 

and 2) the minimum correlation threshold resulting from the template process required to 

accept the CBH result. The above results indicate the optimum values of these parameters: a 

threshold value of around 0.8 and about 200 pixels added at each side. For these intermediate 

values, very little accuracy was lost when implementing the overall method using full template 

matching as a fallback when the heuristic scheme did not yield a satisfactory result, while still 

reducing the overall computation time by roughly 30%.  

 

Influence of Camera Height 

In the process of determining Cloud Base Height (CBH), a common assumption made is that the 

cameras used for capturing sky images are positioned at the same elevation. This assumption 

simplifies the calculations but does not account for scenarios where the cameras are at differing 

heights. The potential impact of such elevation differences was theoretically examined 

previously and can be empirically evaluated by incorporating these height disparities into the 

CBH calculation process and observing any resultant variations in the CBH data. 

 

To quantitatively measure the significance of camera height discrepancies on CBH accuracy, we 

introduce the relative CBH deviation formula: 

𝐶𝐵𝐻,)> =
𝐶𝐵𝐻82& − 𝐶𝐵𝐻

𝐶𝐵𝐻  

Here, 𝐶𝐵𝐻82& represents the erroneous CBH value derived under the assumption of equal 

camera elevation, while 𝐶𝐵𝐻 stands for the actual CBH value. We anticipate that 𝐶𝐵𝐻,)> will 

predominantly depend on the height difference between the cameras and the true CBH itself. 

This analytical approach allows us to assess the extent to which varying camera elevations can 

influence the precision of CBH estimations, a factor that is particularly relevant in complex 

topographical settings or when utilizing cameras at different buildings or structures. 
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Results are shown in Figure 30. The relative CBH error increases for larger camera height 

differences, and is inversely related to the actual CBH. 

 

The research presented in this section underscores that epipolar geometry and stereographic 

imaging can effectively determine CBH and can be further enhanced with heuristic methods to 

reduce computaional effort, which is especially beneficial in multi-camera configurations. 

However, the method needs further testing under various real-life conditions. 

 

 
 
 
 
  

Figure 30. The influence of the camera height difference on the relative CBH error for different CBH. 
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4. Discussion 
 
In this project, we focused on advancing short-term solar forecasting by utilizing an all-sky 

imaging network. Our methodology involved strategically deploying all-sky imagers to analyze 

cloud movement, thereby predicting its impact on solar irradiance. This approach was 

instrumental in refining cloud detection processes, with the SLIC algorithm proving to be 

particularly effective across diverse weather conditions. Additionally, we successfully 

implemented a heuristic method for Cloud Base Height  estimation in a multi-camera setup. This 

innovative approach significantly reduced computational time, optimizing the process of CBH 

calculation. Moreover, the development of a machine learning algorithm for creating accurate 

irradiance maps showed promise, particularly for longer forecast periods, despite some 

challenges related to data quality and dataset size. Overcoming these limitations is expected to 

lead to further enhancements in forecasting accuracy. Collectively, the findings from our study 

demonstrate the potential of combining advanced machine learning techniques with 

comprehensive cloud data analysis. This integrated approach is a crucial step forward in 

improving the operational efficiency of photovoltaic power systems, crucially adapting to the 

dynamic nature of solar irradiance, and marking a significant advancement in solar energy 

forecasting. 

 

The SolFaSi project was an ambitious project with innovative and challenging objectives given 

the available budget. It was even more challenging due to Covid-related restrictions which did 

not allow us to take the necessary steps to install equipment. At the end of the project, the 

envisaged camera set-up has been realized, but data acquisition results are minimal. Therefore, 

other data sets available due to our participation in the IEA-PVPS Task16 as well as from another 

site managed by KNMI have been used to develop image analysis and forecasting algorithms.  

 

Given the limited data collected, no effort could be made regarding potential business plan 

development. However, on the basis of our dissemination activities and the world-wide 

attention for sky-image based forecasting, a clear business is evident. The value of forecasting 
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has not been assessed, while others already have shown that certain value is present depending 

on the stakeholder involved.   
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5. Dissemination 
 
Dissemination activities have aimed to promote non-confidential results obtained within the 

project as swiftly and effectively as possible for the benefit of the whole (scientific) community 

and to avoid duplication of R&D efforts. In particular, our forecasting results have been shared 

with experts of the IEA-PVPS Task 16 (“Reliability and Performance of Photovoltaic Systems”) 

group, and we have participated in a benchmark study in which various sky-imagers and 

forecast software was compared. 
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