

Cost efficient, upscalable and stable transparent conductive oxides for silicon solar cells based on passivated contacts.

"CUSTCO" Public Report

- The contribution from the partners in NL (UT, Solmates, now LAM Reasech) in this project was carried out with a subsidy from the Ministerie voor Economische Zaken en Klimaat, Regeling nationale EZ-subsidies, subsidy scheme Top Sector Energie implemented by Rijksdienst voor Ondernemend Nederland
- it is a SOLAR-ERA-NET energy project (ERA-NET energiecall)

Table of Contents

General Project Information	3
Publishable Project Summary	5
Summary on Project Progress	8
Work Progress	9
Results and Impact	11
Financial Issues	26
Dissemination and Communication Activities	7
Contractual Information	31

General Project Information

Project acronym: CUSTCO Project title: "Cost efficient, upscalable and stable transparent conductive oxides for silicon solar cells based on passivated contacts." Project number: SOLAR-ERA.NET Cofund 2 N° 060 Project website:

Start date of the project: 01.09.2019 End date of the project: 28.02.2023

Final Report Report date: 31.03.2023

Total project costs (EUR): 2.859.300 Requested funding budget (EUR): 1.974.300

Consortium Partners:

Short name of organisation	Fraunhofer ISE
Full name of organisation	Fraunhofer Institute for Solar Energy Systems
Department of organisation	Advanced Development of High-Efficiency Silicon Solar Cells
Type of organisation	Public research organisation
First and family name of coordinator	Dr Martin Bivour
Full address	Heidenhofstr. 2, 79110 Freiburg
Country	Germany

Consortium Partner 2 contact details

Short name of organisation	Dr Monica Morales-Masis
	MESA+ Institute of Nanotechnology.
	University of Twente.
Full name of organisation	University of Twente
Department of organisation	Mesa + Institute for Nanotechnology
Type of organisation	Public research organisation
First and family name of coordinator	Dr. Monica Morales Masis
Full address	Hallenweg 23, 7522NH, 7500 AE Enschede, NL
Country	The Netherlands

Consortium Partner 3 contact details

Short name of organisation	CNRS
Full name of organisation	Centre National de la Recherche Scientifique
Department of organisation	LPICM
Type of organisation	Public research organisation
First and family name of coordinator	Dr. Pere ROCA i CABARROCAS
Full address	Route de Saclay, Ecole polytechnique, 91128 Palaiseau,
Country	France

Consortium Partner 5 contact details

Short name of organisation	Dr Omid Shojaei
----------------------------	-----------------

	Indeotec SA
Full name of organisation	Indeotec SA
Department of organisation	R&D
Type of organisation	Private SME
First and family name of coordinator	Omid Shojaei
Full address	Puits-Godet 12a, 2000 Neuchatel
Country	Switzerland

Consortium Partner 6 contact details

Short name of organisation	Solmates now LAM research
Full name of organisation	Solmates BV now LAM research
Department of organisation	Research and Development
Type of organisation	Private – SME
First and family name of coordinator	Matthijn Dekkers
Full address	Auke Vleerstraat 3, 7521PE, Enschede
Country	The Netherlands

Observer

Short name of organisation	Sindlhauser Materials GmbH
Full name of organisation	
Department of organisation	
Type of organisation	SME
First and family name of coordinator	Mr Peter Sindlhauser
Full address	Daimlerstraße 68, 87437 Kempten
Country	Germany

Publishable Project Summary

This project aimed to develop industrially feasible transparent and conductive oxides (TCOs) to lower the cost and market entry barriers for high-efficiency silicon solar cells with "Passivating Contacts". For the emerging solar cell technology of "Passivating Contacts" and especially for Silicon Heterojunction (SHJ) solar cells, Tin Doped Indium Oxide (ITO) is the current standard TCO material. For the expected very high production volumes (multi GW range), the indium demand of the TCO electrodes will be a roadblock for the upscaling of this technology due to the limited indium supply, the lack of options for end-of-life recycling from the solar module, price fluctuations and the competition with other applications. This challenge is shared with other established and upcoming (thin film) solar cell technologies aiming for high volume production.

To tackles this challenge different strategies have been addressed in the framework of this project, targeting the device structures shown in Figure 1.

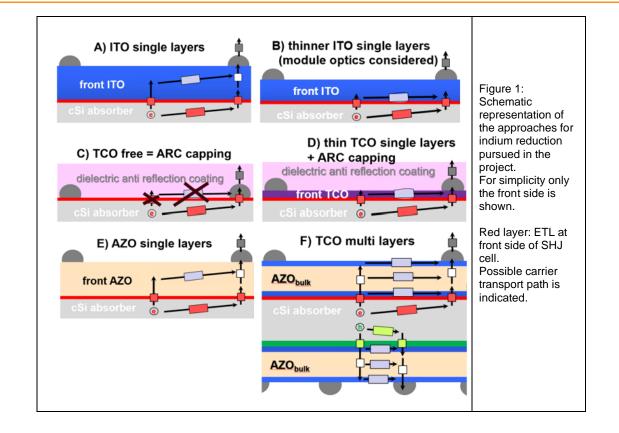
Some highlights are

#Structure C): Proof-of-principle for SHJ cells with TCO-free front side \rightarrow **100% Indium reduction** We evaluated processes routes with respect to their potential for upscaling and gained understanding how to efficiently utilize the lateral charge carrier transport provided by the Si absorber. While the absorber is the only lateral conductive layer in such a TCO-less device architecture, unlike other absorber materials used in thin film devices, the Si absorber can provide similar low sheet resistance as the typically additionally applied TCO films (e.g. structure A)). Ensuring a very low contact resistance at the direct contact between metal and doped silicon thin film for using an industrial metallization scheme was identified as one important building block to fully utilize the lateral transport provide by the Si absorber.

#Structure D): Thin ITO films combined with non-vacuum based dielectric capping layer \rightarrow 70% indium reduction

In this configuration a thin TCO remains which can be beneficial with respect to good contact between metal and the doped silicon thin film and lateral transport. However, the need of having a second thin film layer deposited on top of the finished solar cell at the end of the cell process adds complexity, e.g. with respect to the process flow which needs to be considered for the techno-economical evaluation of such an approach. We showed that used of spray coated TiOx could be an interesting alternative to the established vacuum based deposition of dielectrics.

#Structure F): While further research is needed for the aforementioned approaches towards higher TRL, we successfully establish TCO multilayers as an effective means to balance the trade-off between indium-lean devices and process complexity and resulting techno-economical aspects. For sandwich structures using an indium-free TCO bulk layer (AZO) with thin ITO layers at the interface we managed \rightarrow **75% indium reduction**


We gained a thorough understanding on the role of each layer, e.g. that for a zinc oxide (ZnO) based TCO bulk layer an ITO capping is vital for (chemical) long term stability and that further research is needed for the explored tin oxide (SnO) based indium-free TCOs and more disruptive material alternatives.

#Structure B): We also highlighted that a straightforward approach, actually the first step that should take towards indium reduction, is to focus optimization on the final use case of the solar cell, the solar module. Mainly due to relaxed requirements on the anti-reflection properties if the TCO, depending on the targeted module design this opens up some design freedom to thin down the front and rear side TCO (ITO) layers.

ightarrow ~25% indium reduction at the front

ightarrow >>25% indium reduction at the rear

Dissemination and Communication Activities

List of peer reviewed articles, books, book chapters etc. published with or submitted to academic publishers

Type (article,	Author(s)	Title	Published	Page	ISSN/	Issued/
report, book,	Name(s)		in (<i>Name of</i>	no.	ISBN	volume/ year
compendium			publication			
, journal)			medium)			
journal	L. Tutsch, H. Sai, T. Matsui, M. Bivour, M. Hermle, T. Koida	The sputter deposition of broadband transparent and highly conductive cerium and hydrogen co- doped indium oxide and its transfer to silicon heterojunction solar cells	Prog Photovolt Res Appl.	1-11	n.a.	https://doi.or g/10.1002/pi p.3388 (2021)
journal	C. Luderer, L. Tutsch, C. Messmer, M. Hermle and M. Bivour	Influence of TCO and a- Si:H Doping on SHJ Contact Resistivity	IEEE Journal of Photovoltai cs	329- 336	n.a.	vol. 11, no. 2 (2021)
Article	Y.Smirnov, L.Schmengle r, R.Kuik, P- A.Repecaud, M.Najafi, D.Zhang, M.Theelen, E.Aydin, S.Veenstra, S.De Wolf, M.Morales- Masis	Scalable Pulsed Laser Deposition of Transparent Rear Electrode for Perovskite Solar Cells	Advanced Materials technologie S	Open - acce s 2000 856, 9 page s	n.a.	Volume 6, Issue 2, February 2021
Article	Y.Smirnov, P- A.Repecaud, L.Tutsch, Pere Roca I Cabarrocas, M.Bivour, M.Morales- Masis	Wafer-scale pulsed laser deposition of ITO for solar cells: reduced damage vs. interfacial resistance	Materials Advances	Open acce ss Page s: 3469 - 3478	na	Volume 3, Feb 2022
Article	Y. Smirnov P-A. Repecaud M. Morales- Masis	Three-dimensional in situ imaging of single-grain growth in polycrystalline In2O3:Zr films	Communic ation Materials	Open acce ss	Na	3:38 ,Feb 2022
Article	P-A. Repecaud	Correlated Metals Transparent Conductors with High UV to Visible	Advanced Materials Interfaces	Open aces s,	na	Volume10, Issue1 Oct. 2022

M. Morales-	Transparency on	Page	e l
Masis	Amorphous Substrates	220	1
		335	

List of non-peer reviewed publications (reports, briefs, books, articles targeting policy-makers, industry or other end users)

Type (report, brief, book, article etc.)	Author(s)	Year / publication	Title
Choose type	Name of author	Year of publication	Title of publication
Oral presentation at 37 th EUPVSEC 2020	L. Tutsch, T. Koida, H. Sai, M. Bivour, M. Hermle and T. Matsui	2020	The Sputter Deposition of Low Resistive and Broadband Transparent Cerium and Hydro-gen Co-Doped Indium Oxide and Its Transfer to Silicon Heterojunction Solar Cells
Poster presentation at 1 st International Tandem PV workshop	Y. Smirnov, P-A Repecaud, M Morales-Masis	2021	Pulsed Laser Deposition of Transparent Rear Electrode for Buffer Layer Free Perovskite Solar Cells
Solliance Day 2021 (invited)	Y. Smirnov, P-A Repecaud, M Morales-Masis	2021	Physical Vapor Deposition of Halide Perovskites and Transparent Contacts for Solar Cells
EMRS fall 2021 (invited)	Y. Smirnov, P-A Repecaud, M Morales-Masis	2021	Transparent Contact Materials for Solar Cells: Interfaces and Device Performance.
MRS Fall 2021 (invited)	Y. Smirnov, P-A Repecaud, M Morales-Masis	2021	The critical role of TCO deposition in solar cell performance
Oral presentation at 38 th EUPVSEC 2021	Antonio J. Olivares, Gurleen Kaur, Mateusz Poplawski, Anatole Desthieux and Pere Roca i Cabarrocas	2021	Optimization of the conductivity and crystalline fraction of p-type μc- SiO _x :H films for silicon heterojunction solar cells
10 th Metallization and Interconnection Workshop 2021	Martin Bivour, et al.	2021	Challenges and Perspectives for the TCO and Metal Electrodes in Perovskite-Silicon Tandem Solar Cells: Performance and Scalability
Poster presentation at WCPEC-8 2022	Antonio J. Olivares and Pere Roca i Cabarrocas	2022	Influence of the Growth Temperature and RF Power in p-Type nc-SiOx:H Films on the Performance of Silicon Heterojunction (SHJ) Solar Cells
TCM-TOEO 2022 (invited)	Martin Bivour, et al.	2022	Metal Oxides for Silicon and Perovskite Solar Cells: Material Requirements and Sustainability

			Aspects for Large Scale Deployment of TCOs
TCM-TOEO 2022 (invited)	M. Morales-Masis	2022	Transparent Electrodes for high efficiency Solar cells
MRS Fall 2022 (invited)	M. Morales-Masis	2022	Physical Vapor Deposition of Transparent Electrodes for Solar cells
Oral presentation at WCPEC-8 2022	Martin Bivour et al.	2022	Indium Reduction by 75% Using TCO Multilayers: An Industry Ready Approach for Indium Lean SHJ Cell?

List of other dissemination activities (media coverage, events organized by project, presentations and panel debates, participation in third-party events)

Type (media coverage, events organized by project, presentations and panel debates, participation in third-party events)	Description	Year
Choose type	Description of activities	Year in which activity was conducted
Panel debate	10 th Metallization and Interconnection WS (Martin Bivour)	2021
Panel debate	Tandem PV conference (Monica Morales Masis)	2022

List of patents

Patent Application Number /	Title of the patent	Name of the applicant	Name of the
License	application / license		inventor
n.a.	n.a.	n.a.	n.a.

Comments related to the SOLAR-ERA.NET Cofund call management and administrative procedures: none