Simulaad project

Optimization of Smart Charging strategies

Robert van den Hoed Youssef El Bouhassani Peter van Bokhoven Jan Dam Ruud Noordijk Nazir Refa

Simulaad project

- Clustering charging sessions
- Prediction of connection times
- Testing prediction & optimization

Robert van den Hoed Youssef El Bouhassani Peter van Bokhoven Jan Dam Ruud Noordijk Nazir Refa

Smart Charging can be used to meet EV power demands in an optimal way.

Objective Simulaad: can we optimize charging using historical data?

The dataset spans almost the entire Netherlands with the four largest cities as outliers.

Sessions: 2,177,351 RFIDs: 56,988 Charging stations: 4,428	Sessions: 605,440 RFIDs: 33,907 Charging stations: 1,538			
Data mainly from large cities	Data mainly from rural areas	Data per municipality		

The model is trained on a regular basis. This is necessary because training the model takes a lot of time.

Online real-time

The models are used in real-life at the charging point. The used has an over-run option

The model is trained on a regular basis. This is necessary because training the model takes a lot of time.

Online real-time

The models are used in real-life at the charging point. The used has an over-run option

The model is trained on a regular basis. This is necessary because training the model takes a lot of time.

Online real-time

The models are used in real-life at the charging point. The used has an over-run option

Elaadol

Clustering: Charging sessions can be divided on two axes: (i) start connection time, and (ii) connection time.

The division allows separating between typical user groups

The heatmap can also be visualised as a height map. This gives a better indication of the density of points in the plot.

Gaussian Mixture Models (GMM) were used for clustering charging sessions in 7-9 clusters \rightarrow optimization can be suggested per cluster.

The goal is to find the influence of Smart Charging on net congestion, sustainability and cost of charging.

SMART CHARGING STRATEGIES

Postpone strategy

A session is postponed. The shift is a percentage of the potential to Smart Charge.

Cut and divide strategy

A session is cut into smaller sessions and distributed over the total connection time.

Slower charging strategy

The maximum power for a charging session is reduced so the speed of charging is lower.

PERFORMANCE INDICATORS

Net congestion

How can Smart Charging be used to reduce peak load.

Charging sustainably How can Smart Charging be used to use more sustainable energy sources.

Cheaper charging

How can Smart Charging be used to optimize for APX prices.

When optimized for sustainable energy (solar), morning sessions are shifted the most

When optimizing for power demand, the evening sessions are shifted the most.

But how to predict how long a session will last?

Requires sophisticated prediction models.

The model is trained on a regular basis. This is necessary because training the model takes a lot of time.

Online real-time

The models are used in real-life at the charging point. The used has an over-run option

	Averages	Weighted averages	GLMs	Classification (Linear)	Classification (Non-linear)
Why?	The average connection time of historical charging sessions should be an indication of the average connection time now.	Some charging sessions are more significant than other. Charging sessions should be weighed higher if they are significantly more important	The average connection time is a poor measure. Connection time is influenced by different factors which should be modeled.	GLMs attempt to predict the exact connection time. Another approach is to predict the time window (class) to which a charging sessions belongs.	Linear classifiers can not take complex non- linear boundaries into account.
How?	Calculate average transaction times based on historical sessions related to RFID, time and charge point	Within the maximum boundaries rate sessions based on different formulas	Fit a multivariable regression model to calculate the transaction times in the future	Use a flexible, easy and widely used classification model Random Forests to predict 2 time windows	Use neural networks to encapture non- linear correlations to predict 2+ time windows
Result	Average error: 2.1 - 4.8 hours	Average error : 1.8 - 3.5 hours	R-squared: 0.49 Average error: 2.6 hours	2 classes: >6 and <6 hours Accuracy 78%	5 classes: ≤6, ≤8, ≤12, ≤16, >16 Accuracy 78% - 82%

Elaadni

7

Results prediction of connection times by identifying 6 classes.

Accuracy 83.0%

16-2	24 -	0.1%	0.6%	0.0%	0.0%	0.4%	4.8%
12-1	16 -	0.6%	1.7%	0.1%	1.4%	12.9%	0.8%
ction	12 -	0.2%	0.7%	2.1%	15.7%	1.1%	1.0%
Predi	-8 -	0.0%	0.2%	2.7%	0.1%	0.0%	0.0%
1	-6 -	1.2%	38.9%	1.7%	1.5%	1.8%	2.1%
0	-1 -	4.9%	0.6%	0.0%	0.0%	0.0%	0.0%
	1	0-1	1-6	6-8 Refer	8-12 rence	12-16	16-24

Hogeschool van Amsterdam

Select at random a single session of a single RFID at a specific location

To test our pipeline, first 1 session is selected from our dataset and analyzed. Information session:

Address

Rudolfsteinerlaan, 7207 PV, Zutphen, Nederland

Charging point EVNETNL.

Liander

Hogeschool van Amsterdam Urban Technology

Actual Start: 2019-08-16 08:48:59 Actual End: 2019-08-16 14:43:52 **Connection duration** = 5.91 hours **Charging time** = 1.18 hours **SCP** = 69%

Analyse connection times and charging times at this location

2

Make a prediction & propose a smart charging optimization

- The predicted class is correct (1-6hrs).
- Classification limits smart charging potential.

ACTUAL SESSION PREDICTED AND OPTIMIZED

Start time

10:49

Class 2 (01-06 hours) Class 2 (01-06 hours)

Start time 08:49

Delta start time 0 hours

Delta start time ~ 2 hours

(5,91-1,18)*0,4*60 = 114 minutes

General information

Date

Wednesday 30th october 2019

Sessions

900

First session

00:02:01

Last session 23:58:06

RFID's 832

Average connection time

~ 6.43 hours

Average usage

~ 15.62 kWh

Average historical # sessions per user

~ 91 (minimum: 1, maximum: 1526)

Results multiple sessions

The image below shows the predicted connection time classes (on top) vs the real connection time classes (bottom). We see a spike in predicted times in the second class (1-6). Also some of the sessions cannot be predicted because we do not have enough data from a user to predict accurately what the connection time will be.

Elaadni

Conclusions

- 1. Prediction is necessary for unlocking smart charging potential.
- 2. Predictions is hard particularly on public charging stations and for users with limited sessions.
- **3. Prediction can be powerful** in combination with clustering techniques for CPOs and grid operators.

Taking all the optimization criteria into account is quite a challenge!

