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 Summary 

Background and purpose of the project 
Current monitoring and data analyses provide limited insight in the couses of 
deviating performances. This is an obstacle to improving and guaranteeing the 
quality of NoM houses, especially if large-scale roll-out is desired in the future. The 
aim of the TKI Optimaal project is to develop models and algorithms for data 
analysis with which, in time, at least 80 to 90% of the deviation between the 
predicted and actual energy and indoor climate performance of individual NoM 
houses can be explained. 
 
General approach  
The route we are following is to develop a data-driven RC-network simulation model 
of NOM houses that will allow us to approach the actual performance of those 
houses on an individual level. We choose the development of a physical model over 
the use of a model derived via Artificial Intelligents (AI): AI has its limitations, it is a 
black box that doesn’t make use of the physical information in the data, you need 
training of the model and the model is only valid within the boundaries of the 
trainingdata. Furthermore, since AI is a black box, it gives at the most limited 
information about what will happen after changes are made, e.g. to predict what will 
happen when new technology is used or when users will behave differently. 
However, AI can be useful on top of a physical model (see next stept)  
The development of a data-driven RC-network simulation model of NOM houses 
involves roughly two steps: 1) the development of the model and 2) the best 
possible estimation of the parameters in the model. In TKI Optimaal we took a big 
first step in this by setting up a data-driven RC-network simulation model and filling 
in the parameters in that model by a combination of expert judgement and fitting of 
parameters to monitoring data. 
 
In order to achieve this, we have started to set up monitoring in two types of 
houses, namely social rental houses that have been renovated by BAM to NOM 
level and new-build houses at NOM level built by van Wijnen in Ermelo. The 
purpose of the monitoring was to be able to fit the parameters in the model as well 
as possible. With a good fit, we can ultimately make an assessment of the cause in 
the event of disappointing energy consumption. Another, somewhat conflicting goal 
is to make parameter fitting possible with as few sensors as possible, i.e. to be able 
to estimate parameters well enough on the basis of less data or to be able to 
generate more insight based on the same amount of sensors.  
 
Conclusions and lessons learned on data quality 
Apart from these objectives, good data quality is important in order to be able to 
make statements based on monitoring. That is why we started monitoring the data 
and analyzing the data quality. The most important lessons from data quality 
monitoring and analysis are 1) that to assess the quality of a sensor's data, it is 
important to know what the sensor measures and where the sensor is placed, which 
in practice is not always clear and 2) good agreement is required between the data 
being monitored and the parameters used in the model. In TKI Optimaal first basic 
algoritms were developed to detect possible incorrect data points. In this project the 
analysis of the data quality were still project specific. The next step is to develop 
algorithms to analyze the data quality automatically and how to cope with poor data 
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 and irregularities. The type of sensor and the location where the sensor will be 
installed will have to be taken into account in these algorithms. 
 
Conclusions and lossons learned on model and parameter fitting based on 
monitoring data 
Parallel to the process of collecting the monitoring data, we've set up a data-driven 
RC-network simulation model: a model of the individual houses that we will fit on 
the monitoring data. What the research has shown is that it is feasible to fit a model 
to monitoring data and to arrive at a good reflection of the actual energy 
consumption, hourly temperature progression and energy signature. We reached 
these results despite the fact that the spread in user behavior of residents and 
neighbors in particular leads to large variations in these factors. On the other hand, 
we reached these results thanks to the fact that we have been able to map out this 
behavior through monitoring and surveys. So we can conclude that setting up data-
driven RC-network simulation models of the first NOM houses has been a 
successful first step in order to be able to arrive at a realistic analysis of the 
performance guarantee of individual houses. To eventually be able to explain at 
least 80 to 90% of the deviation between the predicted and actual energy and 
indoor climate performance of individual NoM houses, the big challenge will be to 
determine the parameters in the model with more certainty and to use fewer 
sensors than at present. This applies especially, but not exclusively, to the 
behavioral parameters.  
 
Based on the results of the model, we can learn about renovation concepts that 1) 
in very well insulated homes, the effect of windows that are opened slightly is 
significant even when in rooms that are unheated, due to the equalizing effect of the 
insulation and the heat recovery system, 2) in houses with low temperature systems 
ventilation losses can result in the situation that the system reaches it maximum 
capacity, resulting in temperature drops, 3) in very well insulated homes, the effect 
of the neighbors’ heating behavior is also significant, 4) the effect of realistic 
variations in user behavior in these houses is significant, namely many tens of 
percentages to sometimes over one hundred percent per aspect. 
 
Next steps 
There are a number of methods that will help us to get more certainty about the 
parameters in the model. Some of these methods are already being concretely 
developed in follow-up projects, or will be taken up in future proposals:  
• Using a probabilistic model to get more certainty about the parameter 

estimation: to get insight into the effect of the uncertainty of all parameters in 
the RC-network simulation model, we are working on a probabilistic model. 
Instead of using estimated values in the model, we use probability curves based 
on literature sources or directly derived from data.  

• Using Artificial Intelligence (AI) to predict parameters from measured data: We 
have done a first study to see whether we could predict the use of windows and 
doors based on the measured data. The results were promising: we were able 
to predict if a window was open or closed with an accuracy of 80% for all hours 
of the year. This prediction was done for 2 of the houses in Ermelo with an 
algorithm that was trained by 2 other houses in Ermelo. We plan to expand the 
study next year and also study where AI (hybrid models) have an added value 
to models solely based on physics. 

• Using fault diagnoses to infer if building components or systems malfunction: In 
previous projects, we focused on fault diagnoses based on monitoring data, but 
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 mainly in non-residential buildings. These techniques can also be adapted to 
houses; what are common faults and what are typical patterns in monitoring 
data due to these faults.  

• Using parameter identification by grey box modelling: Fitting parameters using 
grey box modelling is a technique that combines physical models with statistical 
models. The technique is proven for models with only a few parameters. A 
research question is whether the technique will work in more complex models.   

• Using physical models to estimate parameters: One of the key parameters in a 
building model is the building mass. Estimating the building mass from night set 
back profiles is relatively easy for office buildings and older houses with clear 
temperature drops at night. However, for Net-Zero houses this proves more 
difficult since the temperature drop at night is quite small. There might be other 
ways to do this, e.g. by looking for holiday periods or using free floating 
temperatures in summer. 

• Using a better model to estimate ventilation flows: a parameter with a large 
influence is the ventilation flow due to open windows. By coupling a more 
detailed ventilation model (COMIS) to the RC-network, we might be able to 
estimate this component more realistically. With this module added to the RC-
network, it will also be possible to take into account the actual indoor air quality 
performance in addition to actual energy performance and actual thermal 
comfort performance. 

 
In addition, we will have to make a step in the automation of all parts of the process: 
the check of the data quality and the data repair, the fitting of the parameters, the 
fault diagnosis and the performance test. These are next stept that will be taken in 
future projects. 
 
And last but not least, more reseach is needed to find out what we can learn from 
data to improve renovation concepts, and espessially how renovation concepts 
influence behaviour and how that influences the performance of the concept. In the 
IEBB project under the MMIP of 2020, research on this topic will start. 
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 1 Introduction 

Background 
In order to drive forward the energy transition, stakeholders are looking for ways to 
accelerate the construction and renovation towards highly energy-efficient buildings 
that go far beyond the current regulatory bottom-line requirements. To stimulate 
interest from owners and tenants, construction companies and other suppliers of 
deep retrofitting solutions have started to give guarantees on the energy 
performance of these houses and want to do the same for comfort and health 
related aspects in the future.  
With these initiatives, a need has risen for methods that can test these 
performances in practice. For various reasons, the performance may be 
disappointing. The person who provides the guarantee, sometimes for 25 years, 
can be held accountable if the guarantee is not met. This is justified if a 
disappointing performance is caused by structural or technical installation defects. 
In practice, however, we see that user behaviour also has a major impact on the 
performance of a house. In any case, we want insight into the cause of 
disappointing performances: if an installation is not properly set up or tuned, you 
want to send an installation engineer to the house as soon as possible, and if a 
resident’s behaviour is the cause of high energy consumption, you may want to 
send an energy coach. Also insight is needed in user interaction to select and 
improve concepts that perform better during actual use, using such insights in a 
proactive way to optimise design, operation and utilization. That's why we want to 
develop a method with which we can determine at an individual level the actual 
performance of houses that are in use. 
Purpose of the project 
The aim of the TKI Optimaal project is to develop models and algorithms for data 
analysis with which, in time, at least 80 to 90% of the deviation between the 
predicted and actual energy and indoor climate performance of individual NoM 
houses can be explained. 
 
General approach  
The route we are following is to develop a data-driven RC-network simulation model 
of NOM houses that will allow us to approach the actual performance of those 
houses on an individual level. There are many definitions of a data-driven RC-
network simulation model, but what we mean by it in this context is a physical 
model of the performance of a dwelling that approximates actual performance by 
being tuned using monitoring data. The rationale behind this is that if a model 
succeeds in approximating the actual performance of a dwelling, it is also clear 
which aspects determine the performance of that dwelling. After all, these aspects 
are represented by the parameters in the model. If the actual performance is worse 
than the predicted performance, it is therefore possible to find an explanation for the 
deviation with a data-driven RC-network simulation model.  
 
The development of a data-driven RC-network simulation model of NOM houses 
involves roughly two steps: 1) the development of the model and 2) the best 
possible estimation of the parameters in the model. On the one hand, the model will 
have to contain the parameters that will make it possible to approximate the actual 
performance and, on the other hand, the parameters will have to fit in as well as 
possible with reality. And of course there is an interaction between the two: a too 



 

 

TNO report | TNO 2020 R10229  7 / 82  

 simple model will not contain the parameters to explain deviations. And a model 
with too many parameters gives too many solving possibilities to be able to 
determine the cause of deviations, especially if we presort on a large roll-out and 
thus keep a limitation in monitoring data in mind.  
 
Concrete steps taken in TKI Optimaal 
TKI Optimaal is a "TKI toeslag" project with the aim of building knowledge and 
laying the foundation of the data-driven RC-network simulation models as described 
above. The project focuses exclusively on a data-driven RC-network simulation 
model of the energy performance of NOM houses. The focus is mainly on space 
heating. To this end, we have taken the following steps in the project: 
1. Monitoring, including data quality -  to be able to develop a data-driven RC-

network simulation model we need good quality monitoring data. Therefore the 
project started with the development and execution of a monitoring plan and a 
methodology to check the data quality and repair the data where needed. 

2. Model design – The development of the data-driven RC-network simulation 
model itself started with the setup of a first energy model, that was (and will be) 
refined in an iterative process. 

3. First estimation of parameter values – All parameters in the model were filled 
based on building information and expert best guesses.  

4. Improved fit on the basis of monitoring data – A better fit of some of the 
parameters were made based on a fit with the monitoring data. 

5. Sensitivity analyses -  Initial sensitivity analyses were done on some of the 
parameters to improve certainty and to show the effect of variations in some of 
the parameters. 

6. Lessons learned - Experiences in this project have led to insights where 
improvements can be made when using the data-driven RC-network simulation 
model as basis for a performance guarantee. This has led to the 
implementation of a number of follow-up projects that are currently underway 
and from which we have positive expectations for the results. 

 
Domestic hot water use 
The project also paid attention to a prediction of the use of domestic hot water: the 
energy use for domestic hot water is relatively high in NOM houses compared to the 
low energy use for space heating in the highly insulated houses. With a flow meter 
on the warm water, the prediction of this energy use can be improved. In this project 
we investigated if a less expensive solution, a temperature sensor, could be an 
alternative. The findings are described in a separate report. 
 
Reading guide of the report 
The first three chapters, namely chapters 2 to 4, describe the monitoring that has 
taken place in order to be able to set up the basic models for the data-driven RC-
network simulation models. Chapter 2 describes the dwellings monitored in the 
study. Chapter 3 provides an overview of the sensors used in the monitoring and 
Chapter 4 describes how the data quality was tested, which repairs were carried out 
and which lessons were generally learned about data quality and data repair for 
future role out.  
 
Chapter 5 discusses the development of the first data-driven RC-network simulation 
model. This chapter describes which model was used, how the initial estimation of 
the parameters took place and how the model was initially fitted to the monitoring 
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 data. Some initial sensitivity analyses were also carried out. On the one hand to 
gain more certainty about the estimation of a few of the parameters in the model, 
but also to show the effect of possible spread off a few influential parameters on the 
energy consumption of the NOM houses concerned.  
 
Parallel to the development of the data-driven RC-network simulation model, one of 
the NOM houses was also modelled in a detailed building simulation model 
(TRNSYS). During the development of the data-driven RC-network simulation 
model, we saw that some of the behavioral parameters have a major impact on 
energy performance. We wanted to investigate this further. The results are 
described in chapter 6.  
 
Finally, chapter 7 summarizes all the insights from the research and describes what 
we are working on to get the data-driven RC-network simulation model a step 
further and which developments we are working on. 
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 2 Dwellings  

In this project a total of 10 houses was monitored in two different neighbourhoods. 
 

2.1 Emmen 

The first 4 houses are located in Emmen in the north-east of the Netherlands. This 
is a neighbourhood with social housing. These houses were originally built around 
1970. Currently these houses are renovated to NoM (energy neutral) houses. 
Within the NOM concept; the houses are renovated to become net-zero-energy 
using an industrialized (pre-manufactured) concept that includes a full 
refurbishment of the thermal shell, installations and the deployement of local 
generation. Glassing is replaced, a new façade is placed and additional isolation is 
applied on the roof. Energy efficient installations are included in an energy module 
that provides heating (air/water heatpump), fresh air (RCU), storage 
(Sensible/Water) and connectivity. Solar panels, heat recovery system and a heat 
pump are installed. Each dwelling has 2 floors. The living room and the kitchen are 
located on the ground floor. On the first floor, 3 bedrooms and the bathroom can be 
found. The dwelling has a flat roof.  
 

 
Figure 2-1 Dwellings in Emmen 
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Figure 2-2 Ground plan of the Emmen dwelling 
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 2.2 Ermelo 

The other 6 houses are located in Ermelo in the middle of the Netherlands. This is a 
new neighbourhood with private houses. These houses are newly built and also 
NoM houses. The houses have a sloped roof which starts at the first floor and ends 
at the attic. On the roof solar panels are installed. A heat recovery system is 
installed in these houses, in the ventilation channels between the heat recovery and 
the blow-in points two heaters are installed to heat up the air. One heater for the 
ground floor and one heater for the first floor. Hot water comes from an electrical 
boiler.   
 

 
Figure 2-3 Dwellings in Ermelo 
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+

 

Figure 2-4 Ground plan of the Ermelo dwelling 
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 2.3 Specifications of the dwellings 

Table 2-1 Building and installation properties 

Building and installation 
properties  

Ermelo Emmen 

Area 98 m2 107 m2 
Building type Middle to heavy building 

mass 
Middle to heavy 
building mass 

Heating   
• Source Electrical heater in 

ventilation channel 
Air-water heat pump  

• Afgifte systeem Air heating Radiators (traditional)  
• Details Each floor has a 

thermostat. 
In the bathroom a 
radiation panel is 
installed 

Thermostat in the living 

Tap water   
• Installation Electrical Boiler Air-water heat pump 

with a 200 liter Boiler 
Ventilation   

• Type Mechanical supply and 
extract air 

Mechanical supply and 
extract air 

• Heat recovery 95% 95% 
• CO2 controle None None 
• Details Ventilation rate 

(flow/volume) over the 
entire house, to be 
arranged from the 
kitchen in 3 positions. In 
addition to manual 
adjustment, the flow 
rate is also controls by 
the heating: if the 
heating is switched on 
at the bottom or at the 
top floor, the ventilation 
flow rate is set to the  
maximum.  

Ventilation rate 
(flow/volume) over the 
entire house, to be 
arranged from the 
kitchen in 3 positions. 
In addition in the 
bathroom a timer switch 
is installed.  

• Windows/grill Windows Windows 
Shell   

• Rc 
floor/facade/roof 
(m2K/W) 

8 / 8 / 11 
Head end Rc = 9 

5 / 4,7 / 5  

• U window/door 
(W/m2K) 

0.8 / 0.8 1,1 / 1,1  

• Infiltration qv,10 
(ltr/sm2) 

0.150 0,39 

• Solar shading None (except the demo 
house, which has 

Shading glass at the 
ground floor and on the 
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 shading on two 
windows on the 1ste 
floor. ) 

1st floor at the windows 
on the south. 

• facade with the 
neighbours 

12cm sand-lime brick; 
6cm air cavity; 12cm 
sand-lime brick 

Approximately the 
same as in Ermelo 

Solar Power   
• PV 36.4 m2 (South) 37m2 up to 39,6m2 
• PVT None None 
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 3 Sensors 

In each of the dwellings a set of sensors was installed to monitor the energy use, 
the temperature, but also if doors and windows are open or closed. In the table 
below all sensors are shown.  
 

Table 3-1 Overview of sensors in the dwellings 

Type Location Emmen Ermelo 
Temperature Living X X 
Temperature Kitchen X 1 

Temperature Bedroom 1 X X 
Temperature Bedroom 2 X X 
Temperature Bedroom 3 X X 
Temperature Attic  X 
Temperature Tap water X X 
Setpoint Living X X 
Setpoint 1st floor X  
Energy Heat pump X  
Energy Electrical Heater 1  X 
Energy Electrical Heater 2  X 
Energy Heat recovery X X 
Energy Solar panels X X 
Energy Smart Meter X X 
Energy Electrical Boiler  X 
Status Heat pump X2  
Open/Close Front door X X 
Open/Close Back door X X 
Open/Close Kitchen window X X 
Open/Close Living window X  
Open/Close Bedroom 1 window X X 
Open/Close Bedroom 2 window X X 
Open/Close Bedroom 3 window X X 
Open/Close Bathroom window  X 
Open/Close Attic window  X 
Flowrate Tap water X X 

 
1 In Ermelo the kitchen is part of the living room 
2 The status of the heat pump indicates if it is in use for space heating or for tap 
water 
 
 
Most of the sensors are battery powered and communicate via a wireless protocol, 
the Z-wave protocol. The Z-wave router is connected to a 4g modem, which upload 
the data to the server.  
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 4 Data quality 

While the previous chapter shows all the sensors which are installed in the 
dwellings, the data cannot be directly used as input for the models. First all data 
needs to be check on the data quality. In this chapter data quality is discussed. The 
chapter is build up in three part. First the causes of problems with data quality are 
discussed. Second the types of incorrect data are shown and as a final part some 
basic algorithms are shown to detect incorrect datapoints. This chapter is specific 
for this monitoring project, but many parts are generic and can also be used in other 
projects. At the end of the chapter there is a session with lessons learned and with 
conclusions. 

4.1 Causes of problems with data quality 

4.1.1 Type of sensor 

4.1.1.1 Battery powered 
Sensor which are battery powered can end up with an empty battery. If the battery 
is not replaced, no data will be available.  

4.1.1.2 Wireless sensor 
For most wireless sensors, the distance between the sending and receiving part is 
given in the free field. However in practice this distance is much smaller and 
influenced by wall and floor. Beside of these two factors, also metal and furniture 
plays a role. Therefore the communication can be disturbed for some sensors.  

4.1.1.3 Status and open/close 
Sensors of this type, only send their data when the value is changed. If this value is 
not changed for a long time it is hard to define if the data is correct or not. The 
sensors for open/close exists out of two parts, if one of the parts is aligned incorrect 
or is fallen down, the sensor will not give the correct reading. 

4.1.1.4 Resolution 
The resolution of a sensor will influence the results from any calculation or 
simulation. In this project, the sensors measuring neighbour temperature have a 0.5 
degree resolution. But also measurements on kWh and volume (m3)  have a 
resolution which is sometimes to large. The effect of a relative large resolution is 
show in the figure below. The blue line has a resolution of 0.1 degree, while the red 
line has a resolution of 0.5 degree. It can be observed, that a temperature change 
of 0.1 degree can lead in one case to an overestimation of 0.4 degree, and in 
another case has no effect at all.  
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Figure 4-1 Example of the effect of resolution on the measured temperature 

4.1.1.5 Accuracy 
The accuracy of a sensor will influence the results from any calculation or 
simulation. For this project the best temperature sensors are selected with a 
measured standard deviation of 0.1 degree.  

4.1.2 Location of sensor 
When a temperature sensor is located on a spot near the window, where the sun 
can shine on the sensor the measured temperature can be much higher than the 
actual temperature. This can also happen when the sensor is located near to a heat 
source. When a temperature sensor is mounted on or very close to the wall, the 
measured temperature will be influenced by the temperature of the wall. In the 
figure below the temperature of the air is shown in red. And the measurement of the 
thermostat, which is wall  mounted, is shown in purple. 
 

 

Figure 4-2 Example of the influence of the wall temperature on the temperature reading 

4.1.3 Infrastructure 
The infrastructure between the sensor and the location of data storage plays an 
important role in the data quality, especially in missing data. In this project the 
sensors communicate wireless via the Z-wave protocol with the Gateway. The 
gateway is connected to a 3/4g modem. The gateway communicates with the 
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 servers of BeNext. On the servers of BeNext the data is stored. If there is any 
communication error/failure in the chain no data will be received and stored. During 
the project there were problems with the 3/4g modem, but also failures in the mobile 
network.  
 

 

Figure 4-3 Overview of the infrastructure 

4.2 Types of incorrect data 

4.2.1 Spikes 
Spikes are datapoints which are much higher or lower than the previous or next 
datapoint. These higher or lower values should not be part of a trend. For example 
a trend is when a sudden temperature rise is followed by a couple of datapoints 
which also show a rising temperature The datapoints with a spike are random much 
higher or lower than the measurement point around it.   
 
In the figure below an example of a spike. In this case it shows the energy 
production from the solar panels in kW.  
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Figure 4-4 Example of a spike 

4.2.2 Gaps 
Gaps in simple words is missing data. It is one or more measurement point which 
are missing in the dataset. The effect of these gaps depends on the measured 
quantity, therefore the definition of gaps is different for each sensor. Unfortunate 
gaps cannot be defined for the on/off type sensors. 
 

 

Figure 4-5 Example of data with gaps 

4.2.3 Frozen 
Frozen data means that the value of the measured data stays the same for a period 
longer than expected. Also this period is different from sensor to sensor. This period 
depends on the type of sensor, and it location. How quick will a sensor react, or 
how often will something be used. Beside this also the resolution of the sensor will 
influence the period. For example if you measure temperature with a resolution of 
0.1 or 0.5 degrees. Very small fluctuations will not be “detected” by the sensor with 
the highest resolution. In the figure below an example. The figure shows the 
cumulative energy use for domestic hot water. In August the energy use is zero for 
longer than a day. And for several days in a row. This can indicate frozen data, or 
as in this case people which are on holidays. 
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Figure 4-6 Example of data with frozen data 

4.2.4 Absolute value 
For a measured quantity a minimum and maximum value can be defined. This 
value should have a logical (physical) background. Also those values are different 
for each type of sensor and for their purpose. In the figure below an example. The 
figure shows the temperature in the living room. Temperature above 35 degrees in 
summer are already odd, but temperature up to 40 degrees where measured in 
November. In this case the temperature sensor was near an electrical heater. When 
the heater is switched on the temperature rises very quickly, the opposite happens 
when the heater is switched off.  
 

 

Figure 4-7 Example of temperature sensor which shows unrealistic high values 
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 4.2.5 Criterium 
For each sensor location and sensor type criteria has been defined. criteria of when 
measured data is frozen, has a gap or exceed the absolute values.  
 
For example the temperatures measured in the different rooms of the house. These 
sensors have a 0.1 degree resolution therefore it is expected that this value will 
change relative quick. After some investigation in the data we can up with a value of 
4 hours (240 minutes) for frozen data. The sensors send their data every 10 
minutes and in our simulation we run on a 1 hour time interval, therefore a period of 
1 hour is chosen to define a gap. For the absolute boundaries 10 and 35 degrees 
are chosen.  
 
Also the temperature at the neighbours is measured, but with a sensor with a 
resolution of 0.5 degree, therefore the criterium for frozen data has been extended 
to 1 day instead of 4 hours.  
 
For all measurement on the electrical consumption/production data the criterium for 
frozen data is set to 1 day. Solar panels for example should produce some energy 
every day.  
For the use of tap water a period of 10 hours is used for the frozen data. Almost no 
use during the night or when the occupants are out for work.  
 
In the tables below the criteria are given for the gap, frozen and absolute values.  

Table 4-1 Criteria for gap and frozen data 

 dT frozen 
[minutes] 

dT gap 
[minutes] 

Temperature 240 60 
Power 1440 60 
Flow 600 60 
Status 840 60 
Volume 1440 60 
Neighbour Temperature 1440 60 

 

Table 4-2 Criteria for the absolute value 

  Low Criterium High Criterium 
Heat pump Setpoint Temperature 5 30 
Heat pump Consumed energy kWh 0 3000 
Heat pump Operation Mode -0.1 6.1 
Tap water Temperature 5 65 
Tap water Volume [l/min] 0 15 
Heat recovery  Consumed energy kWh 15 55 
Living Temperature 10 35 
Kitchen Temperature 10 35 
Master Bedroom Temperature 10 35 
Bedroom Temperature 10 35 
Bathroom Temperature 10 35 
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 4.3 Algorithms to detect incorrect data 

4.3.1 Spikes 
 
Below a simplified version is shown of how the algorithm works to detect spikes.  
As a first step the difference between each measurement value and the previous is 
calculated. From all measurement points with a delta not equal to zero the standard 
deviation is calculated. The next step is to compare all data points with the 3σ 
(Sigma) criterium (99% interval). For each datapoint which is out of this range it is 
checked if it is part of a trend. If the datapoint is part of a trend it will not be marked 
as spike.  A trend means that the previous and next datapoint have the same 
direction and some order of magnitude (factor 3). As a last check. A spike should 
also have a  “contra” spike If there is no “contra” spike it means that the value will 
remain much higher of lower for a longer period or will slowly return towards its 
original value.   
 

 

This function will return a true/false array for each datapoint.

function [true_false_array] = spikes(value)

calculate the difference between the values

DeltaValue = diff(value)

find all differences not equal to 0

id = find(abs(DeltaValue>0))

if length(id)>1

T F

calculate the 3s boundaries

MaxDelta = 3*std(DeltaValue(id))

find values which are outside the bounds

id1 = 1+find(abs(DeltaValue)>border)

determine trend of previous datapoint

Trend1 = DeltaValue(id-1)/DeltaValue(id-2)

determine trend of next datapoint

Trend2= DeltaValue(id)/DeltaValue(id-1)

Check if spike is part of a trend

TrendCheck = (trend1>0.3)&(trend1<3)|(trend2>0.3)&(trend2<3)

remove spikes which are part of a trend

id = id(find(TrendCheck == 0))

check for each spike if there is a contract spike within the next 5 datapoints

for nn = 1:1:length(id)

calculate the time difference between two spikes

diff_spikes = diff(id(nn-1:nn+1))

outcome is zero if no contra spikes are in the data

ContraCheck = sum(diff_spikes<5)

remove spikes without a contra spike

id = id(find(ContraCheck==0))

no spikes are present

id_spike = []

       

  

     

  



 

 

TNO report | TNO 2020 R10229  23 / 82  

 

 

4.3.2 Gaps 
 
Below a simplified version is shown of how the algorithm works to detect gaps.  
As an input it requires, the time axis (time of each measured value), the measured 
values, but also the given interval in minutes. This last parameter is the criterium. If 
there is no data for a period that is longer than the criterium it is indicated as a gap. 
As a first step the time difference is calculated between each measurement point. 
As a second step all datapoints are marked for which the delta is larger than the 
criterium. Next also the latest datapoints before a gaps are marked. The total 
numbers of days (some of all gaps) and the percentage of time are calculated. 
 

 
 
  

         

   

     

  

      

  

 

   

  

      

  

    

  

    

 

       

  

       

    

              

   

      

  

          

  

     

  

   

  

create the output array, with only good(1) data

true_false_array = ones(size(value))

add spikes (0) to the array

true_false_array(id) = 0

this function returns a true/false array for each datapoint. As well as the number of gaps, number of days and the percentage of time

function [gaps nr_days perc_time true_false_array] = gap(time_axis,value,interval_min)

Calculate DeltaTime in minutes

DeltaTime = diff(time_axis*24*60)

find when the interval between to datapoints is larger then the given interval

id = find(DeltaTime>interval_min)

create array with start and end time of gaps

gaps =[];

create the true/false array with good data(1)

true_false_array = ones(size(value))

for nn=1:1:length(id)

add start time of the gap to the array

gaps(nn,1) = time_axis(id(nn)+1)

add end time of the gap to the array

gaps(nn,2) = time_axis(id(nn)+2)

add the gap to the true/false array

true_false_array(id(nn)+1:id(nn)+2) = 0

Calculate the total number of days which are missing

nr_days = sum(gaps(:,2)-gaps(:,1))

Calculate the percentage of time with missing data

perc_time = 100*(1-nr_days/(time_axis(end)-time_axis(1)))
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 4.3.3 Frozen 
 
Below a simplified version is shown of how the algorithm works to detect frozen 
data. As an input it requires, the time axis (time of each measurement 
), the measured values, but also the given interval in minutes. This last parameter is 
the criterium. As a first step the difference between each measurement is 
calculated. All values which are the same as the previous value are marked. As a 
next step it looks for the begin and end of periods of frozen data. For each period 
the duration is calculated and compared with the criterium. All data point within a 
frozen period are marked as frozen.  
 

 
 
  

This function returns a true/false array for each datapoint

function [true_false_array] = frozen_data(time_axis,value,interval_min)

calculate the difference between each measurement

DeltaValue = diff(value)

find all datapoint which are equal to the previous datapoint

id_nochange = find(DeltaValue==0)

find the end of a period of data with the same value (frozen data)

id_endoffrozen = find(diff(id_nochange)>1)

check if there is (potential) frozen data in de dataset

if ~isempty(id_enoffrozen)

T F

determine the end of a frozen period

frozen_end = id(id2)+1

determine the begin of a frozen period

frozen_start = id([1 id2(1:end-1)+1])+1

calculate the duration of the period

dT = 24*60*(time_axis(frozen_end)-time_axis(frozen_start))

check if period is longer than specified

id_frozen = find(dT > interval_min)

remove to short periods from this array

frozen_start = frozen_start(id)

remove to short periods from this array

frozen_end = frozen_end(id)

create true/false array, with all true

true_false_array = ones(size(value))

for nn = 1:1:length(frozen_start)

set true/false array to false for periods with frozen data

true_false_array(frozen_start(nn):frozen_end(nn)) = 0 

true_false_array = ones(size(value))
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 4.3.4 Absolute value 
 
The basics of this algorithm is very simple. For each datapoint it is check if it is 
within the specified limits. If the datapoint is outside the limits it is marked. 
 

 
 
  

function [true_false_array] = abs_value_check(t,y,limits)

for nn = 1:2:length(limits)

Check if data is equal or larger than the lower limit

check_low = (y≥limits(nn))

Check if data is equal or smaller than the higher limit

check_high = (y≤limits(nn+1))

create an array for the lower limit

check(nn,:) = check_low.*check_high

create an array for the lower limit

check(nn+1,:) = check_low.*check_high

create the true/false array

true_false_array  = check(1,:)&check(2,:)
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 4.4 Lessons learned 

Before starting a new project an investigation should be made about the type, 
location and communication of the sensors. This to be sure that the data has the 
best data quality possible. For example the measured value of the temperature 
sensor is influenced by the location. When the sensor is mounted on the wall the 
temperature dynamics are damped by the mass of the wall.  
 
The fact that data is only stored on the server leads to more (smaller) gaps. Or a 
complete loss of data for a longer period when there is a failure in the network.  
 
Status / open/close sensors only sent a value when changed this makes it really 
difficult to perform checks on data quality.  
 
Every sensor (type and location) has its own criteria. In this project this values are 
determined by hand. But this can be improved in the future.  
 

4.5 Conclusion 

During this project a start is made for the analysis of data quality. First basic 
algoritms were developed to detect possible incorrect data points. The work done is 
project specific. However many parts are generic and can be used as a starting 
point for new projects. During the project it was investigated what causes there are 
for problems with data quality. What kind of incorrect data is present in the datasets. 
As a third step some basic algorithms are developed to detect incorrect datapoint in 
the measured dataset.  
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 5 Development of the data-driven RC-network 
simulation models 

The energy and indoor climate performance of Zero on the Meter (NoM) houses is 
sometimes disappointing. At present, the available monitoring tools and data analysis 
methodologies are unable to identify the causes of deviating performance. We aim at 
bridging this gap by developing data-driven RC-network simulation models of the 
individual NoM houses: if a model succeeds in approximating the actual performance 
of a dwelling, it is also clear which aspects determine the performance of that 
dwelling. After all, these aspects are represented by the parameters in the model. If 
the actual performance is worse than the predicted performance, it is therefore 
possible to find an explanation for the deviation with a data-driven RC-network 
simulation model. This chapter described the methodology used to develop these 
data-driven RC-network simulation models. Subquestions were: what model is 
suitable as a basis for a data-driven RC-network simulation model, how do we 
determine the parameters in the model and when are we sure enough that this 
combination of model and parameters is indeed a good representation of reality so it 
can predict the performance well enough for its purpose.  
 
To answer these questions and to develop the data-driven RC-network simulation 
models, a basic setup of the model was made and a first estimation of the parameters 
was done. Paragraph 5.1 gives the general description of the basic RC model of the 
data-driven RC-network simulation models, the explanation about why we chose this 
model and about various parameters/inputs required for the model, results obtained 
by using the RC model and the so-called verification of the model by comparing the 
model results with the measured data. To improve the certainty of the model, 
paragraph 5.2 describes a sensitivity analysis, to investigate the influence of some of 
the parameters in the model on the energy consumption of the dwellings. This chapter 
concludes with lessons learned in general and with respect to the research questions. 

5.1 Modelling Approach 

The development of a data-driven RC-network simulation model of NOM houses 
involves roughly two steps: 1) the development of the model and 2) the best possible 
estimation of the parameters in the model. In the following paragraphs we’ll start with 
outlining the parameters of the dwellings that form the basis for the model. This is 
partly a repetition of chapter 3. We’ll then go into the model itself and give a first 
estimation of the parameters. We’ll finish the paragraph with a check how good the 
first parameter fit actually is.  

5.1.1 General Description of Dwellings and building parameters 
As described in chapter 2 and 3, in TKI Optimal we monitored 4 dwellings located in 
Emmen and 6 dwellings located in Ermelo. For the development of the data-driven 
RC-network simulation models we started with 2 of the houses in Emmen of which 
we had the most and qualitative best data. In this report we will call these houses 
‘Emmen 224” and “Emmen 228”. Figure 5-1 shows the general floor plan of the first 
floor1. The first floor consists of living room, kitchen and the entrance. Figure 2-2 

 
1 In the Netherlands it is called as “ground floor”. 
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 represents the floor plan of the second floor2. This floor has 4 bedrooms, one storage 
room, one bathroom and the hallway.  
 

 

Figure 5-1. Floor Plan for the First Floor 

 

 

Figure 5-2. Floor Plan for the Second Floor 

 
 

 
2 In the Netherlands it is called as “first floor”. 
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 Table 5-1. and Table 5-2 show the parameters used in the RC model for floor 1 and 
floor 2. Floor areas are derived from Figure 5-1 and Figure 5-2. The Rc and U values 
are obtained from Table 2-1. There is no exact information about the façade area and 
window area. Therefore, these values are derived from building pictures.  

Table 5-1. The Parameters of Floor 1 

 

Table 5-2. The Parameters of Floor 2 

 

5.1.2 RC Network and Mathematical Model 
We chose a hourly 3-zone RC network model as a basis for the data-driven RC-
network simulation model of the dwellings in Emmen. This choise was made because 
the data-driven RC-network simulation model needs to do justice to the dynamics of 
reality on the one hand, but not contain too many parameters on the other hand. With 
a model that is too simple, such as a monthly model or a one-zone model, it becomes 
very difficult to determine the cause of an anomaly at the individual level of a single 

Parameters – First Floor Unit Emmen 224 Emmen 228 

Floor Area  [m2] 60 60 
Floor Height  [m] 2.7 2.7 

Facade Area - Total  [m2] 33.7 33.7 
Facade Area (Opaque Part only) [m2] 19.6 19.6 

Window Area - Total  [m2] 14.1 14.1 
Window Area - South  [m2] 0 0 
Window Area - West  [m2] 7.3 7.3 
Window Area - North  [m2] 0 0 
Window Area - East  [m2] 6.8 6.8 

Rc - Façade (Opaque Part only) [m2K/W] 4.7 4.7 
Rc - Floor  [m2K/W] 5 5 
Rc - Roof  [m2K/W] 5 5 

U value - Window  [W/m2K] 1.1 1.1 

Parameters – Second Floor Unit Emmen 224 Emmen 228 

Floor Area  [m2] 60 60 
Floor Height  [m] 2.7 2.7 

Roof Area  [m2] 60 60 
Facade Area - Total  [m2] 33.7 33.7 

Facade Area (Opaque Part only) [m2] 24.7 24.7 
Window Area - Total  [m2] 9 9 
Window Area - South  [m2] 0 0 
Window Area - West  [m2] 4.8 4.8 
Window Area - North  [m2] 0 0 
Window Area - East  [m2] 4.2 4.2 

Rc - Façade (Opaque Part only) [m2K/W] 4.7 4.7 
Rc - Floor  [m2K/W] 5 5 
Rc - Roof  [m2K/W] 5 5 

U value - Window  [W/m2K] 1.1 1.1 
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 household: the effect of that anomaly must be clearly reflected in the model. A model 
with too many parameters, such as a TRNSYS model for example, has too many 
knobs to turn on and therefore too many uncertain components, all of which have to 
be tuned to reality.  
 
The advantage of modelling 3-zones in the dwelling is that you can make a distinction 
among various spaces that are heated and used in a diffirent way. The 3 zones were 
originally devided over the house as followed: zone 1 is the heated living room and 
kitchen (the whole first floor), zone 2 are all heated spaces on the second floor and 
zone 3 are all unheated spaces on the second floor. However, since in both houses 
all rooms on the second floor were either all heated or all unheated, the distinction 
between zone 2 and 3 was finally made based on orientation and by using a rather 
arbitrary border (see Figure 5-3). The border was chosen arbitrary to keep the model 
general. The 60% of the total floor area of the second floor is considered as Zone 2 
and the rest is Zone 3. 
 

 

Figure 5-3. The Presentation of 3 Zones in the dwellings in Emmen 

 
The RC network and mathematical model are described for Zone 1 only in this 
section, otherwise the text becomes unreadable. However, Zones 2 and 3 are almost 
exact copies, except from the ground floor. All energy flows through Zone 1 are 
indicated in Figure 5-4. The red dashed rectangle in this figure is used to distinguish 
describe the inner and outer thermal mass.  
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Figure 5-4. Energy Flow Through Zone 1 

 
The RC network in Figure 5-5 is derived based on the energy flow through Zone 1. 
The full RC network drawing is given for Zone 1 only. The RC network is repetitive 
for Zone 2 and 3 except for the part of the ground floor.  
 

 

Figure 5-5. RC Network of 3 Zones The dwellings in Emmen 

The RC-network has two state variables for each zone, one describing the interior 
temperature 𝑇𝑇𝑤𝑤_𝑖𝑖  (𝑇𝑇𝑤𝑤_𝑖𝑖_1 for Zone 1), which is the lumped temperature of indoor air 
and the first layer of the wall and one representing the temperature of the building 
envelope 𝑇𝑇𝑤𝑤_𝑜𝑜 (𝑇𝑇𝑤𝑤_𝑜𝑜_1 for Zone 1). The first-order dynamics are represented by the 
stochastic differential equations below for Zone 1.  
 

𝐝𝐝𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏

𝐝𝐝𝐝𝐝 =
𝟏𝟏

𝐂𝐂𝐰𝐰_𝐢𝐢_𝟏𝟏
�

−𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡𝟏𝟏 + 𝐏𝐏𝐯𝐯𝐞𝐞𝐯𝐯𝐝𝐝𝟏𝟏 + 𝐏𝐏𝐬𝐬𝐬𝐬𝐥𝐥𝟏𝟏 + 𝐏𝐏𝐢𝐢𝐯𝐯𝐝𝐝𝟏𝟏
+𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏 + 𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏 + 𝐏𝐏𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏 + 𝐏𝐏𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏

� 

 
𝐝𝐝𝐓𝐓𝐰𝐰_𝐬𝐬_𝟏𝟏

𝐝𝐝𝐝𝐝 =
𝟏𝟏

𝐂𝐂𝐰𝐰_𝐬𝐬_𝟏𝟏
�𝐏𝐏𝐝𝐝𝐭𝐭𝐭𝐭𝐯𝐯𝐬𝐬𝐭𝐭_𝟏𝟏 + 𝐏𝐏𝐝𝐝𝐭𝐭𝐭𝐭𝐯𝐯𝐬𝐬𝐭𝐭_𝐧𝐧 + 𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏� 
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 where 
𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏 = 𝐔𝐔𝐔𝐔𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡�𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐬𝐬_𝟏𝟏� 
𝐏𝐏𝐯𝐯𝐞𝐞𝐯𝐯𝐝𝐝_𝟏𝟏 = 𝐔𝐔𝐔𝐔𝐯𝐯𝐞𝐞𝐯𝐯𝐝𝐝𝐯𝐯𝐭𝐭𝐬𝐬𝐢𝐢𝐬𝐬_𝟏𝟏�𝐓𝐓𝐬𝐬𝐨𝐨𝐝𝐝 − 𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏� 
𝐏𝐏𝐬𝐬𝐬𝐬𝐥𝐥_𝟏𝟏 = (𝐧𝐧 𝐯𝐯𝐭𝐭𝐥𝐥𝐨𝐨𝐞𝐞)(𝐟𝐟𝐬𝐬𝐡𝐡𝐭𝐭𝐝𝐝𝐢𝐢𝐯𝐯𝐧𝐧)(𝐐𝐐𝐬𝐬𝐬𝐬𝐥𝐥)(𝐔𝐔𝐧𝐧𝐥𝐥𝐭𝐭𝐬𝐬𝐬𝐬_𝟏𝟏)(𝐒𝐒𝐬𝐬𝐥𝐥𝐭𝐭𝐭𝐭 𝐅𝐅𝐭𝐭𝐭𝐭𝐞𝐞𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯) 
𝐏𝐏𝐝𝐝𝐭𝐭𝐭𝐭𝐯𝐯𝐬𝐬𝐭𝐭_𝟏𝟏 = 𝐔𝐔𝐔𝐔𝐝𝐝𝐭𝐭𝐭𝐭𝐯𝐯𝐬𝐬𝐭𝐭_𝟏𝟏�𝐓𝐓𝐬𝐬𝐨𝐨𝐝𝐝 − 𝐓𝐓𝐰𝐰_𝐬𝐬_𝟏𝟏� + 𝐔𝐔𝐔𝐔𝐝𝐝𝐭𝐭𝐭𝐭𝐯𝐯𝐬𝐬𝐭𝐭_𝐧𝐧 ��𝐓𝐓𝐧𝐧𝐭𝐭𝐬𝐬𝐨𝐨𝐯𝐯𝐝𝐝 − 𝐓𝐓𝐬𝐬𝐨𝐨𝐝𝐝�/𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐬𝐬_𝟏𝟏� 
𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏 = 𝐔𝐔𝐔𝐔𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏�𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏� 
𝐏𝐏𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏 = 𝐔𝐔𝐔𝐔𝐞𝐞𝐞𝐞𝐞𝐞𝐡𝐡_𝟏𝟏𝟏𝟏�𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏� 
𝐏𝐏𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏 = 𝐔𝐔𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏�𝐔𝐔𝐔𝐔𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡��𝐓𝐓𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏� 
𝐏𝐏𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏 = 𝐔𝐔𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏�𝐔𝐔𝐔𝐔𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡��𝐓𝐓𝐯𝐯𝐞𝐞𝐢𝐢𝐧𝐧𝐡𝐡_𝟏𝟏 − 𝐓𝐓𝐰𝐰_𝐢𝐢_𝟏𝟏� 

 
The state equations above do not include 𝐏𝐏𝐡𝐡𝐞𝐞𝐭𝐭𝐝𝐝𝐞𝐞𝐭𝐭_𝟏𝟏 because of the methodology which 
is followed in the model. As seen in Figure 5-6, first the temporary temperatures are 
calculated for next time step by state equations. After that, the required heating 
powers for each zone are calculated based on setpoint temperatures and temporary 
temperatures. Then the heating capacity is evenly distributed based on the heating 
needs in each zone. Finally, the temperatures in the next time step are calculated 
based on adjusted heating powers for each zone.  

 

Figure 5-6. Methodology Used in the Model 

5.1.3 Parameters and boundary conditions of RC Model 
This section describes most parameters and boundary conditions used in the model 
such as heating setpoint, weather conditions, heating systems, internal heat gains, 
ventilation system and the thermal mass. The building parameters were already given 
in paragraph 5.1.1. 

5.1.3.1 Temperature Profiles 
The following measured temperatures (hourly data) are used in this model:  

 Indoor temperature: There are 4 temperature sensors used that measure 
the temperature of the indoor environment (1 in the living room and 3 in the 
bedrooms). These measured temperatures are compared with the 
temperatures that are calculated by the model as a mean to check the 
accuracy of the model.   

 Set point temperature: The thermostat temperature in the living room is 
used as the heating setpoint temperature. 
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  Neighbor temperature: Basically this is the indoor temperature in the 
neighbor’s living room. It is used to calculate the heat loss or gain towards or 
from the neighbor/s.  

 Outdoor temperature: The outdoor temperature is obtained from a KNMI 
weather station. The nearest KNMI weather station to the dwellings is in the 
Hoogeveen (STN:279, LON(east):6.574, LAT(north):52.750, ALT(m):15.80) 
which is approximately 25-30 km away from the dwellings.  

 Ground floor temperature:  Ground temperature data is not available in the 
KNMI weather data file. Therefore Tground is assumed as 10 °C and constant 
during the all year (although it varies from 7 °C to 13 °C during the year). 
However, the dwellings have a crawlspace which is natural ventilated. 
Therefore, the average of ground and outside temperature ((Tground +Tout )/2) 
is used in the model to calculate the transmission loss through the ground 
floor. 

5.1.3.2 Thermal Mass 
The basic idea in our model is that out of the total thermal mass of a building, only a 
relatively small part (typically between 15-35 % for a single-family dwelling)3 is able 
to effectively exchange heat with the indoor environment to affect diurnal variations 
in indoor temperature. The inner part of the total thermal mass typically consists of 
the indoor walls, floor, roof, etc., with a thickness of up to a few cm of material plus 
most of the furniture. This part of the thermal mass is called the indoor mass (Cw_i). 
The remaining part of the thermal mass of the building is called the outdoor mass 
(Cw_o). 
The total thermal mass of the building is calculated from the volume and density of 
building materials. For ease of calculation, the simplified generic relations between 
indoor mass (Cw_i) and building volume (V) is: Cw_i = a ∗ Vb where a is 0.18 and b is 
0.923. The fraction between the indoor mass and the total building mass is assumed 
as 0.3 for a medium level insulated the single-family house, as described in the 
article3 .  

5.1.3.3 Heating System 
The space heating in the dwellings is provided by an air source heat pump (PUHZ-
SW50VHA). Table 5-3. shows the heating capacity and the Coefficient of 
Performance (COP) of the heat pump which is taken from the datasheet4 for the 
nominal operating conditions at 45 °C outlet temperature of the water.  

Table 5-3. Heat Pump Specification 

Tamb [C] Capacity [kW] COP  
-15 3.15 1.46  
-10 4 1.77  
-7 4.4 1.98  
2 5 2.47  
7 6 3.32  

12 7.07 3.63  
15 7.54 3.89  
20 8.04 4.19  
25 8.54 4.49 Extrapolated 

 
3 Koene, F.G.H. et. al. (2014), Simplified building model of districts, fifth German-Austrian IBPSA 
conference 
4 For PUHZ-SW50VHA model, which can be accessed by using 
https://planetaklimata.com.ua/instr/Mitsubishi_Electric/Mitsubishi_Electric_Ecodan_Data_Book.pdf 
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 30 9.04 4.79 
35 9.54 5.09 

 

 

Figure 5-7. COP of Heat Pump 

Figure 5-7 represents the variation of COP with the variation in the ambient air 
temperature in the second plot. Also it represents the time-dependent COP data in 
the first plot which is used for calculating the heat pump thermal power.  
Figure 5-8 shows the heat pump electricity consumption data and the time-dependent 
COP data in first plot. Then by using the formula (HP Powerthermal = COP ∗
HP Powerelectric), the thermal power of heat pump is obtained and it is represented in 
the second plot.  



 

 

TNO report | TNO 2020 R10229  35 / 82  

 

 

Figure 5-8. Heat Pump Thermal Power 

The maximum heating capacity of the heat pump is 5 kW as stated in the data sheet5 
and it is assumed that the capacity is evenly distributed over the zones based on the 
heating needs of each zone. The explanation of the iterative progress that is used to 
calculate the heating power per zone is given in Table 5-4..  

Table 5-4. Heating power calculation per zone 

 Zone 1 Zone 2 Zone 3 

Heating power (initial calculation) 
 Ptot= P1+ P2+ P3 

 
P1 

 
P2 

 
P3 

Distribution ratio D1= P1/ Ptot D2= P2/ Ptot D3= P3/Ptot 

If Ptot< Pmax Ptot_new= Ptot 

If Ptot>= Pmax Ptot_new= Pmax 

Distributed heating power D1*Ptot_new D2*Ptot_new D3*Ptot_new 

5.1.3.4 Solar Gain 
As described in section 5.1.2, the solar gain (𝐏𝐏𝐬𝐬𝐬𝐬𝐥𝐥) is calculated by the formula 
below.  

𝐏𝐏𝐬𝐬𝐬𝐬𝐥𝐥 = (𝐧𝐧 𝐯𝐯𝐭𝐭𝐥𝐥𝐨𝐨𝐞𝐞)(𝐟𝐟𝐬𝐬𝐡𝐡𝐭𝐭𝐝𝐝𝐢𝐢𝐯𝐯𝐧𝐧)(𝐐𝐐𝐬𝐬𝐬𝐬𝐥𝐥)(𝐔𝐔𝐧𝐧𝐥𝐥𝐭𝐭𝐬𝐬𝐬𝐬)(𝐒𝐒𝐬𝐬𝐥𝐥𝐭𝐭𝐭𝐭 𝐅𝐅𝐭𝐭𝐭𝐭𝐞𝐞𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯) 
Where g value is the glass transmittance, fshading is the shading factor because of 
external and internal solar blinds and the surrounding objects, (Qsol) is the hourly 
solar radiation on horizontal surface which is available in the KNMI weather station 

 
5 For PUHZ-SW50VHA model, which can be accessed by using 
https://planetaklimata.com.ua/instr/Mitsubishi_Electric/Mitsubishi_Electric_Ecodan_Data_Book.pdf 
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 (the nearest is Hoogeveen, STN:279), Aglass is an area of glass and the Solar Fraction 
is introduced in this equation to convert solar radiation on a horizontal surface to the 
vertical surface of the corresponding facade. The solar fraction and the shading factor 
used in the model are described in annex A. 

5.1.3.5 Internal Gain 
Internal heat gain is mainly because of the occupancy, lighting and the appliances, 
which are discussed as follow: 

5.1.3.5.1 People 
There is no sensor data available in both the dwellings in Emmen related to 
occupancy. Therefore the number of occupant and occupancy schedules are derived 
from the questionnaire, which can be found in annex B for both the dwellings. 
However, the distribution of occupancy to the zones is still unknown. Therefore, a 
new term, the occupancy fraction6 per zone is introduced and available in Table 5-5., 
which is based on the assumption. Finally, the heat generation by occupants is 
assumed as 100 W per person during the day and evening and 70 W per person 
during the night. 

Table 5-5. Occupancy fraction per zone 

 Occupancy Fraction per 
Zone 

Zone 1 (Floor 1) 

Occupancy Fraction per 
Zone 

Zone 2 and 3 (Floor 2) 
Morning (08:00 - 13:00) 0.75 0.25 

Afternoon (13:00 - 18:00) 0.75 0.25 
Evening (18:00 - 23:00) 0.75 0.25 

Night (23:00 - 08:00) 0.0 1.0 

5.1.3.5.2 Lighting and Appliances 
In order to incorporate the heat gain caused by the appliance, the net electricity 
consumption for each dwelling is determined by using the measured data of the 
electricity consumption from the grid, generation from PV panels and the surplus 
electricity fed to the grid from the PV panels. 
In the first step, the total electricity consumption is calculated by using the following 
formula below. 

𝐓𝐓𝐬𝐬𝐝𝐝𝐭𝐭𝐥𝐥 𝐞𝐞𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 [𝐤𝐤𝐤𝐤] = (𝐓𝐓𝐬𝐬𝐝𝐝𝐭𝐭𝐥𝐥 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 𝐟𝐟𝐭𝐭𝐬𝐬𝐭𝐭 𝐧𝐧𝐭𝐭𝐢𝐢𝐝𝐝 
                                                                      +𝐏𝐏𝐏𝐏 𝐧𝐧𝐞𝐞𝐯𝐯𝐞𝐞𝐭𝐭𝐭𝐭𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 − 𝐑𝐑𝐞𝐞𝐝𝐝𝐨𝐨𝐭𝐭𝐯𝐯𝐞𝐞𝐝𝐝 𝐝𝐝𝐬𝐬 𝐝𝐝𝐡𝐡𝐞𝐞 𝐧𝐧𝐭𝐭𝐢𝐢𝐝𝐝 𝐟𝐟𝐬𝐬𝐭𝐭𝐭𝐭 𝐏𝐏𝐏𝐏) 
 

Afterward, the electrical consumption of appliances, such as the TV, the stove, the 
washing machine etc. is derived by using the following calculation:  

𝐍𝐍𝐞𝐞𝐝𝐝 𝐞𝐞𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 [𝐤𝐤𝐤𝐤]       
= 𝐓𝐓𝐬𝐬𝐝𝐝𝐭𝐭𝐥𝐥 𝐞𝐞𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯
− (𝐄𝐄𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 𝐛𝐛𝐛𝐛 𝐝𝐝𝐡𝐡𝐞𝐞 𝐡𝐡𝐞𝐞𝐭𝐭𝐝𝐝 𝐜𝐜𝐨𝐨𝐭𝐭𝐜𝐜 𝐟𝐟𝐬𝐬𝐭𝐭 𝐰𝐰𝐭𝐭𝐝𝐝𝐞𝐞𝐭𝐭 𝐭𝐭𝐯𝐯𝐝𝐝 𝐬𝐬𝐜𝐜𝐭𝐭𝐞𝐞𝐞𝐞 𝐡𝐡𝐞𝐞𝐭𝐭𝐝𝐝𝐢𝐢𝐯𝐯𝐧𝐧
+ 𝐞𝐞𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 𝐛𝐛𝐛𝐛 𝐝𝐝𝐡𝐡𝐞𝐞 𝐯𝐯𝐞𝐞𝐯𝐯𝐝𝐝𝐢𝐢𝐥𝐥𝐭𝐭𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 𝐭𝐭𝐯𝐯𝐝𝐝 𝐤𝐤𝐓𝐓𝐤𝐤 𝐡𝐡𝐞𝐞𝐭𝐭𝐝𝐝 𝐭𝐭𝐞𝐞𝐞𝐞𝐬𝐬𝐯𝐯𝐞𝐞𝐭𝐭𝐛𝐛 𝐬𝐬𝐛𝐛𝐬𝐬𝐝𝐝𝐞𝐞𝐭𝐭) 

 
For most of the appliances, all electric energy consumed converts into heat but still 
the conversion factor is unknown . Moreover, most of the heat produced by the 

 
6  It is the fraction of total occupancy present during different time period of the day in a particular 
zone.  
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 dishwasher and the washing machine goes to waste. Thereby, It is assumed that 
90% of the net electricity consumption will generate internal heat gain. Moreover, it 
is also assumed that 60% of the net electricity is used on the ground floor, while only 
40% is used on the first floor7. This results in: 
 

𝐏𝐏𝐥𝐥𝐢𝐢𝐧𝐧𝐡𝐡𝐝𝐝 𝐭𝐭𝐯𝐯𝐝𝐝 𝐭𝐭𝐜𝐜𝐜𝐜𝐥𝐥𝐢𝐢𝐭𝐭𝐯𝐯𝐞𝐞_ 𝐧𝐧𝐭𝐭𝐬𝐬𝐨𝐨𝐯𝐯𝐝𝐝 𝐟𝐟𝐥𝐥𝐬𝐬𝐬𝐬𝐭𝐭 [𝐤𝐤𝐤𝐤] = 𝐍𝐍𝐞𝐞𝐝𝐝 𝐄𝐄𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 ∗ 𝟎𝟎.𝟗𝟗 ∗ 𝟎𝟎.𝟔𝟔  
𝐏𝐏𝐥𝐥𝐢𝐢𝐧𝐧𝐡𝐡𝐝𝐝 𝐭𝐭𝐯𝐯𝐝𝐝 𝐭𝐭𝐜𝐜𝐜𝐜𝐥𝐥𝐢𝐢𝐭𝐭𝐯𝐯𝐞𝐞𝐞𝐞_𝐟𝐟𝐢𝐢𝐭𝐭𝐬𝐬𝐝𝐝 𝐟𝐟𝐥𝐥𝐬𝐬𝐬𝐬𝐭𝐭 [𝐤𝐤𝐤𝐤] = 𝐍𝐍𝐞𝐞𝐝𝐝 𝐄𝐄𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 ∗ 𝟎𝟎.𝟗𝟗 ∗ 𝟎𝟎.𝟒𝟒 

 
The 𝐍𝐍𝐞𝐞𝐝𝐝 𝐄𝐄𝐥𝐥𝐞𝐞𝐞𝐞𝐝𝐝𝐭𝐭𝐢𝐢𝐞𝐞 𝐞𝐞𝐬𝐬𝐯𝐯𝐬𝐬𝐨𝐨𝐭𝐭𝐜𝐜𝐝𝐝𝐢𝐢𝐬𝐬𝐯𝐯 [𝐤𝐤𝐤𝐤] is negative for some timesteps as it can be seen in 
Figure 5-9. It is because all the energy sensors are not sending information at the 
exact same time to the data logger(timestep mismatch for different energy sensors) 
and because of that the net electric consumption is negative for some timesteps. 
However, the cumulative electricity consumption increases linearly as expected. It 
means the data is still reasonably useable. Therefore it has been decided to use the 
daily average values which are always higher than zero. 
 

 

Figure 5-9. Electricity Consumption by Appliance 

5.1.3.6 Ventilation System 

5.1.3.6.1 Mechanical Ventilation 
In the dwellings, the mechanical ventilation rate has been measured by flow finder 
for each position of ventilation. Table 5-6. shows the measurement results per zone. 
Resuming, zone 1 consists of the kitchen and the living room. Zone 2 contains 2 
bedrooms, while zone 3 has only one bedroom.. 

 
7 Based on expert best guess at time 



 

 

TNO report | TNO 2020 R10229  38 / 82  

 Table 5-6. Flowrate (L/s) for the different ventilation positions (1/2/3) for all three zones of each 
building 

 Emmen 224 Emmen 228 
 Stand 1 Stand 2 Stand 3 Stand 1 Stand 2 Stand 3 

Zone 1 22 25 27 20 21 26 
Zone 2 11.5 14.5 14.5 14 15 16.5 
Zone 3 4 5 6 16 20 25 

 
In  Table 5-6., it can be easily seen that the mechanical ventilation rate varies 
depending on the position of the ventilation (positions 1/2/3). However, there is no 
direct sensor data available to obtain the ventilation position. Therefore measured 
data of the energy consumption of the heat-recovery/ventilation system (named: 
WTW_Vermogen_kWh) in Figure 5-10 (blue) is used to estimate the position (1/2/3) 
of ventilation in each zone. It is obvious in this figure that there are 3 different energy 
consumption levels which correspond to ventilation position. The ranges which 
includes these 3 different levels and their corresponding ventilation position are 
summarized in Table 5-7.. Figure 5-10 also shows how the position of ventilation is 
varying by changing the ventilation heat recovery (WTW), in kW, for Emmen 224. As 
it is already mentioned, this is derived from the WTW data by using the conditions as 
described in the Table 5-7.  

Table 5-7. Ventilation position for the various ranges of the WTW_Vermogen_kWh 

WTW_Vermogen_kWh Position of ventilation 

0.01-0.028 kW 1 

0.029-0.043 kW 2 

>0.043 kW 3 

 

 

Figure 5-10. Ventilation position Vs WTW for Emmen 224 
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Figure 5-11. Ventilation position and UAvent for all 3 zones of Emmen 224 

Figure 5-11 gives the variation in ventilation losses (UAvent) of all three zones by 
changing the ventilation position. It can be observed that ventilation losses are 
relatively higher at ventilation position 3 compared with position 1. This is because of 
the higher ventilation flowrate at position 3, which consequently increases the losses. 
Finally, the efficiency of the heat recovery unit is assumed to be 80%8.  

5.1.3.6.2 Ventilation via Open Windows and Doors 
The methodology to estimate the flow rate through open windows and doors is given 
in Figure 5-12: firstly the theoretical pressure difference (∆Ptheo(t)) between the 
indoor and the outdoor is calculated based on the wind velocity which is obtained 
from the KNMI weather station data.  
 

 

Figure 5-12. Methodology to estimate the flow rate through window and door 

The time-dependent opening area (A(ϴ(t))) is one of the biggest uncertainty in this 
model. In the dwellings in Emmen there are sensors on all windows and doors. An 

 
8 According to the building information document the efficiency of heat recovery system is 95% 
and the correction factor of 85% is used (it is assumed that for 80% of the time this efficieny is 
achieveable) 
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 example of such a sensor is given in Figure 5-13. Thereby, it is possible to detect 
when window and door are closed (0) or open (1). The data from these opening 
sensors are given for Emmen 224 in the Figure 5-14. Sometimes the data is in 
between 0 and 1. For instance, if the sensor gives 0.5 for a particular timestep, it 
means the window/door is open only for half an hour. 
 

 

Figure 5-13. Opening sensor 

 

 

Figure 5-14. Window and door opening sensor for Emmen 224 

5.1.3.6.3 Infiltration 
Infiltration losses can basically be modeled by what we call the “Power Law”, which 
is the function of an air pressure differential across a building envelope and the flow 
characteristic of the shell:  

𝐪𝐪𝐏𝐏 =  𝐂𝐂 ∗ ∆𝐏𝐏𝐯𝐯 
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 where qV is volumetric airflow, C air permeability coefficient, ∆P pressure difference 
and n flow exponent. Theoretically, the flow exponent n lies between 0, for fully 
developed turbulent airflows, and 1 for fully developed laminar airflows.  
The measured infiltration rate (qV10) for the dwelling is 1 L/s.m2 at 10 Pa pressure 
difference. The qV10 is extrapolated back to more typical pressures inside the 
dwellings by using the following formula. The pressure difference inside the dwelling 
is assumed to be around 1 Pa and the n is assumed 0.5 in this model9. Although the 
pressure difference inside the dwelling changes over the year due to wind orientation 
and wind speed, it is assumed constant in this model. 

𝐪𝐪𝐏𝐏𝟏𝟏 = 𝐪𝐪𝐏𝐏𝟏𝟏𝟎𝟎 ∗ �
𝟏𝟏
𝟏𝟏𝟎𝟎�

𝐯𝐯

 

5.1.4 Results of RC Model fit on measured data 
The RC model is run with a one-hour simulation time step for the whole measurement 
period, starting from 22 September 2017 until 28 May 2018. This period covers 
almost all the space heating period throughout the year. The temperature, energy 
demand and energy signature results for both dwellings are provided below. A 
suitable model should have a close agreement between the predicted and the 
measured data. Thereby, the results obtained from RC models such as indoor 
temperature, energy demand and the energy signature are compared with the 
corresponding measured data.  
During the initial run of the model the results were not very promising, mainly because 
of the uncertainty in the ventilation losses. Later on, we tuned the windows opening 
fraction to match the temperatures, heating demand and energy signature with the 
corresponding measured data.   
 
To investigate whether the parameter fit was successful we used 3 indicators: 1) the 
actual energy consumption, 2) the actual hourly temperature changes in the 
different zones for a whole year and 3) the energy signatures. Fitting the model on 
only one indicator is easy, but hardly gives any convidence whether the parameters 
in the model represent reality. If the model is ably to closly follow the 3 indicators, 
including the hourly pattern of the temperatures in the zones, this gives more 
confidence that the model actually represents reality.  The following paragraphs 
describe the fit of the models for the 3 indicators: temperature, energy demand and 
energy signature.  
 

5.1.4.1 Temperature  
Figure 5-15 and Figure 5-16 represent the indoor temperature results of the dwellings 
in Emmen for a simulation with one hour time step, for 22 September 2017 until 28 
May 2018. In these plots, the temperature results of RC model are compared to 
measured temperatures for all the three zones. The corresponding ambient 
temperature is also provided in the plots to analyse the temperature results. As we 
can observe, the predicted temperature for all 3 zones are following the measured 
temperature for both dwellings. In case of Emmen 224 all zones are heated while 
Zone 2 and 3 are not heated in Emmen 228.  
As we can see in the following figures, there is somehow a close agreement between 
the predicted and measured temperature (for most of the observation period), which 
implies that the model is capable to predict the actual temperature inside the dwelling.  

 
9 Based on expert best guess at time 
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Figure 5-15. Temperature results for Emmen 224 
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Figure 5-16. Temperature results for Emmen 228 

5.1.4.2 Energy Demand 
Energy demand is one of the key performance indicator, which provides the 
opportunity to evaluate the RC model. Comparing the predicted energy demand with 
the measured energy provides the so-called verification of the model.  
Figure 5-17 and Figure 5-18 represent the cumulative heating demand results of the 
dwellings in Emmen for the above-mentioned time period. In these plots, the results 
of RC model (Predicted P) are compared to the measured heating demand of 
dwellings.   
Since the measurement period starts in September, the heating required at the 
beginning of the simulation period is low. The RC model for Emmen 224 provides the 
total heating demand of 4149 kWh, which is comparable with the measured heating 
demand (4165 kWh).   
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Figure 5-17. Heating demand results for Emmen 224 

 

Figure 5-18. Heating demand results for Emmen 228 
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 5.1.4.3 Energy Signature 
Energy signature represents the heating demand versus the ambient temperature 
which are average over a defined period, typically a week. The slope of the lines in 
energy signature represents the total losses. Higher the slope, the higher will be the 
losses and consequently the heating demand of the dwelling. Figure 5-19 and Figure 
5-20 show the energy signatures of the dwellings in Emmen for the above-mentioned 
time period. In these plots, the calculated energy use with the RC model (predicted 
thermal power) are compared to the measured energy use (measured thermal power) 
of the dwellings. The energy demand and the outside temperature is averaged on 
weekly-basis. The red and green dots in the figure represent the measured and 
predicted data points, respectively and the red and green lines represent the linear 
regression of the corresponding data points. The purple dots represent the electrical 
power used by HP and it is used to calculate the measured thermal power of HP10. 
Moreover, as expected, the energy demand decreases with the increase in outside 
temperature.  
As we can see in the following figures, the predicted results for the energy signatures 
have a quite close agreement with the measured energy signatures, which implies 
that the model is predicting energy performance which is close to the actual 
performance of these dwellings.  

 

Figure 5-19. Energy signature results  for Emmen 224 

 

 
10 HP Powerthermal = COP ∗ HP Powerelectric 
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Figure 5-20. Energy signature results for Emmen 228 

5.1.4.4 Conclusions 
In the previous paragraphs we described the first parameter fit for two of the houses 
in Emmen. These fits are successful: the model succeeds in matching the following 
indicators with reality: 1) the actual energy consumption, 2) the actual hourly 
temperature changes in the different zones for a whole year and 3) the energy 
signatures. This is a promising result. The fact that the model is able to follow these 
3 indicators, gives some confidence that the model actually represents reality.   
 
However, the fit techniques are not yet of such a nature that we can be completely 
sure that the parameters are close to the actual characteristics. On the other hand, 
the fit has been successful thanks to the monitoring data that was available, while 
the explicit goal is to reduce the number of sensors in the houses. 
 
We therefore need ways to determine the parameters in the model with more 
certainty and to use fewer sensors than at present. To gain more confidence in the 
estimated value of some of the parameters in the model, in the following paragraph 
a number of sensitivity studies were carried out.  
 

5.2 Sensitivity Analysis 

Since there are many parameters in the model and it is very important to have the 
best possible estimation of the parameters. The aim of the sensitivity analysis is to 
find out what aspects are important to improve certainty in the model and to show the 
effect of variations in some of the aspects. The following aspects are considered: 
 

 Thermal mass 
 Thermal mass fraction 
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  Temperature setpoints 
 Neighbor temperatures 
 Door and window opening fraction 

There are two reasons to choose these aspects. The first one is that many 
parameters or inputs are used in the model however we are not certain about the 
accuracy of some of them (thermal mass, thermal mass fraction and door and window 
opening fraction). The second one is to take the partner’s interests into consideration 
(temperature setpoints and neighbor temperature).  
These aspects defined above are investigated based on space heating. This is 
because the project focuses exclusively on a data-driven RC-network simulation 
model of the energy performance of NOM houses. Therefore, space heating is the 
main indicator to evaluate the sensitivity of the model. 

5.2.1 Thermal Mass 
As described in Section 5.1.3.2, the thermal mass of the dwelling is calculated from 
the simplified generic equation11 based on dwelling volume. However, this equation 
provides an insight into the thermal mass for a typical dwelling type, not exact results. 
Therefore this analysis has been performed to quantify the effect of the thermal mass 
on the heating demand of the dwelling. Here the main focus is heating demand, 
although it might also influence the temperature result. 
The following cases have been studied: 

 Base case: Thermal mass used in the model (Cap). It is calculated from the 
simplified generic equation described in Section 5.1.3.2 for the dwellings in 
Emmen. 

 Case 1: Lower thermal mass (Cap*2/3) 
 Case 2: Higher thermal mass (Cap*4/3) 

Figure 5-21 

Table 6-1 shows the comparison of heating demand for all the above-mentioned 
cases for both the dwellings in Emmen. As it can be seen in the figure, the total 
heating demand is only slightly influenced by varying the thermal mass. Therefore 
we can conclude that the influence of the thermal mass on the energy use for heating 
is small. We didn’t study the effect of the thermal mass on the hourly temperature 
gradient in the houses. We expect that influence to be larger. 
  

 

 
11 Koene, F.G.H. et. al. (2014), Simplified building model of districts, fifth German-Austrian IBPSA 
conference   
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 Figure 5-21. Heating demand results for Emmen 224 and 228 for the different cases of thermal mass 
(Cap) 

5.2.2 Thermal Mass Fraction 
As described in Section 5.1.3.2, the total thermal mass of the dwelling consists of 
inner and outer parts. The typical thermal mass fraction for a single-family dwelling is 
between 15-35 %12 and it represents the ratio between indoor mass and total mass 
of the dwelling. However, this range provides an insight into the thermal mass for a 
typical dwelling type, not particularly for this situation. Therefore this analysis has 
been performed to quantify the effect of the thermal mass on the heating demand of 
the dwelling. Here the main focus is heating demand, although it might also influence 
the temperature result.  
The following cases have been studied: 

 Base case: Thermal mass fraction used in the model (f = 0.3) 
 Case 1: Lower thermal mass fraction (f = 0.2) 
 Case 2: Higher thermal mass fraction (f = 0.5) 

Figure 5-22 shows the comparison of heating demand for all the above-mentioned 
cases for both the dwellings in Emmen. As can be seen in the figure, the total heating 
demands in all above-mentioned cases are quite close to each other. Therefore we 
can conclude that the influence of the thermal mass fraction on the energy use for 
heating is small. We didn’t study the effect of the thermal mass fraction on the hourly 
temperature gradient in the houses. We expect that influence to be larger.  
 

 

Figure 5-22. Heating demand results for Emmen 224 and 228 for the different cases of the thermal 
mass fraction (f) 

5.2.3 Temperature Setpoints  
We investigated the influence of the temperature setpoint on the total heating 
demand of the dwellings. To study this effect, we used the measured temperature 
setpoint, but increased and decreased this setpoint for the whole period from the 
measured value by 1 and 2°C.  
 
The cases we studied were the following:  

 Case 1: Setpoint temperature used in the calculation is 2°C less than the 
measured setpoint temperature, ΔTset = -2   

 
12 Koene, F.G.H. et. al. (2014), Simplified building model of districts, fifth German-Austrian IBPSA 
conference   
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  Case 2: Setpoint temperature used in the calculation is 1°C less than the 
measured setpoint temperature, ΔTset = -1   

 Base case: Setpoint temperature used in the calculation is the same as the 
measured setpoint temperature, ΔTset = 0 

 Case 3: Setpoint temperature used in the calculation is 1°C higher than the 
measured setpoint temperature, ΔTset = 1   

 Case 4: Setpoint temperature used in the calculation is 2°C higher than the 
measured setpoint temperature, ΔTset = 2   

Figure 5-23 shows the comparison of heating demand for all the above-mentioned 
cases for both dwellings in Emmen.  

 

Figure 5-23. Heating demand results for Emmen 224 and 228 for the different cases of setpoint 
temperature (Tset) 

 
Table 5-8. represents the variations in the heating demand by varying the heating 
setpoint from the actual measured setpoint. As it is obvious in the Table 5-8., increase 
in the setpoint by 1 °C increases the heating demand by 40-50% for Emmen 224. 
While in case of Emmen 228, the effect of increasing the setpoint of 1 °C on the 
heating demand is 25-35%. The difference in the increase in heating demand 
between these dwelling can be related to differences in the user behaviour between 
the houses: e.g. zone 2 and zone 3 are mostly heated in Emmen 224 and mostly 
unheated in Emmen 228. In case of heated bedrooms, there are more losses 
(transmission, ventilation and losses to the neighbors) because of the higher 
temperature difference. 
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 Table 5-8. Comparison of heating demand for the different cases of setpoint temperature (Tset) 

 
 

In this study we considered the temperature at the neighbors as a fixed pattern. In 
reality the temperature at the neighbors is influenced by the temperature of the 
studied house, therefore the changes in heating demand are overestimated.  

5.2.4 Neighbor Temperature 
The neighbors boundary conditions have a considerable effect on the heating 
demand of a dwelling. Therefore it is  interesting to get insight in the influence of the 
neighbor’s temperature on the energy performance of the dwelling.  
For the base case, the neighbor’s temperature is assumed the same as the measured 
indoor temperature of the dwelling. This is the so-called ideal case without any heat 
loss/gain to the neighbors. In addition, other cases are considered by increasing and 
decreasing the temperature at the neighbors by 1 and 2°C.  
 
The cases we studied were the following:  

 Case 1: Neighbor’s temperature used in the calculation is 2°C less than the 
measured indoor temperature, ΔTneigh = -2   

 Case 2: Neighbor’s temperature used in the calculation is 1°C less than the 
measured indoor temperature, ΔTneigh = -1 

 Base case: The neighbor’s temperature used in the calculation is the same 
as the measured indoor temperature, ΔTneigh = 0   

 Case 3: Neighbor’s temperature used in the calculation is 1°C higher than 
the measured indoor temperature, ΔTneigh = 1   

 Case 4: Neighbor’s temperature used in the calculation is 2°C higher than 
the measured indoor temperature, ΔTneigh = 2  

Figure 5-24 shows the comparison of heating demand for all the above-mentioned 
cases for both the dwellings in Emmen.  
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Figure 5-24. Heating demand results for Emmen 224 and 228 for the different cases of neighbor 
temperature (Tneigh) 

Table 5-9. represents the effect on the heating demand by varying the temperature 
difference between the neighbor’s temperatures and the indoor temperature. The 
variations in the heating demand from the base case for various above-mentioned 
cases are represented, for both dwellings in Emmen. The base case in the table 
represents the scenario when there is no loss to the neighbor’s. This is because the 
neighbor temperatures used in the calculation are assumed the same as the 
measured indoor temperature of the dwelling. Moreover, the negative temperature 
difference (ΔTneigh) leads to the increase in heating demand and it increases with the 
increase in temperature difference (ΔTneigh).  
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 Table 5-9. Heating demand results for Emmen 224 and 228 for the different cases of neighbor 
temperature (Tneigh) 

 
 

It is interesting to note that the effect of ΔTneigh on the heating demand for both 
dwellings is different and tihs is because of the difference in user behaviour: e.g. zone 
2 and zone 3 are mostly heated in Emmen 224 and mostly unheated in Emmen 228. 
As it is evident from this analysis, for this specific situation the increase in heating 
demand for the dwelling with heated bedrooms is almost double compared with the 
dwelling with an unheated bedroom. This is because, in the case of heated 
bedrooms, there are more losses or gains because of the higher temperature 
difference.  
In this study we considered the temperature at the neighbors as a fixed patern as 
given per scenario. In reality this temperature at the neighbors is influenced by the 
temperature of the studied house, therefore the changes in heating demand are 
overestimated.  

5.2.5 Window Opening Fraction 
As described in Section 5.1.3.6, both the dwellings in Emmen are equipped with door 
and window opening sensors. Thereby, it is possible to detect when window and door 
are closed (0) or open (1) or sometimes in between 0 and 1 (for instance, if the sensor 
gives 0.5 for a particular timestep, it means the window/door is open only for half an 
hour). However, the door and window opening area which is one of the main 
parameters to estimate the flow rate through open windows and doors is still unknown 
because the opening fraction is unknown and it leads to one of the biggest 
uncertainties in this model.  
From the measured data for the windows opening, it has been observed that the 
occupants are quite often opening the bedroom windows, even during the heating 
period. We studies the influence of opening the bedroom windows on the heating 
demand. We focussed on the bedroom windows only. Thus, this analysis has been 
performed to quantify the effect of the bedroom windows opening fraction on the 
heating demand of the dwelling.  
 
We studied the following cases: 

 Case 1: Whenever bedroom windows are open, the opening duration is 
decreased to 0. Factor = 0.0. So we assume all wbedroom windows to be 
closed all the time. 
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  Case 2: Whenever bedroom windows are open, the opening duration is 
decreased by 0.5. Factor = 0.5. So we assume all windows to be opened 
only half of the time that they are actualy opened. 

 Base case: Actuel measured bedroom windows opening schedule, Base 
Case.   

 Case 3: Whenever bedroom windows are open, the opening duration is 
increased by 1.5. Factor = 1.5. So we assume all windows to be opened one 
and a half times more that they are actualy opened. 

 Case 4: Whenever bedroom windows are open, the opening duration is 
increased by 2. Factor = 2.0. So we assume all windows are opend twice as 
much as they are actualy opened. 

In this analysis all bedroom windows are taken into account. In Figure 5-25 only the 
window opening/closing pattern of the left front bedroom for Emmen 228 is shown. 
The base case (factor=1) represents the measured opening schedule. While other 
cases represent opening schedules with more (factor>1) or less (factor <1) opening 
times.  Opening schedules for the 5 cases are shown in the following figure. 
 

 

Figure 5-25. Change of windows opening behavior for Emmen 228 (for left bedroom window) 

Figure 5-26 shows the comparison of heating demand for all the above-mentioned 
cases for the bedroom windows opening, for both dwellings in Emmen. The X-axis in 
the figure represents the window opening hours based on the different opening 
factors, as explained above. As expected, the heating demand of both the dwellings 
in Emmen increases with the increase in opening hours of the windows.  
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Figure 5-26. Heating demand results for Emmen 224 and 228 for the different cases of window 
opening hours 

 
Table 5-10. shows the effect of window opening hours on the heating demand of the 
dwellings in Emmen. As seen in the table, the effect of an increase in the opening 
factor on the heating demand is different for both dwellings because of the varying 
user behaviour in the houses.  

Table 5-10. Heating demand results for Emmen 224 and 228 for the different cases of the window 
opening 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is interesting to see that the heating demand for Emmen 228 is higher compared to 
the heating demand of Emmen 224, even the bedrooms in Emmen 228 are unheated 
for most of the time over the measured period. This finding reflects how occupancy 
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 can affect heating demand. In this particular scenario, this is mainly because of the 
opening of windows. As we can see in  
Table 5-10. the hours of bedroom windows opening for Emmen 228 are almost 3 
times that of Emmen 224.  
 

5.3 Conclusions and lessons learned  

The aim of TKI Optimaal is to develop models and algorithms for data analysis with 
which, in time, at least 80 to 90% of the deviation between the predicted and actual 
energy and indoor climate performance of individual NoM houses can be explained. 
The approach that we followed in TKI Optimaal is to develop a data-driven RC-
network simulation model of NOM houses that will allow us to approach the actual 
performance of those houses on an individual level as good as close as possible. 
The conclusions of the development are the following: 
 
• In TKI Optimaal we took a big first step by setting up a data-driven RC-network 

simulation model and filling in the parameters in that model by a combination of 
expert judgement.   
On of the parameters that is unknown in the model and that will have a big 
effect on the nergy use of the houses is the opening fraction of the windows. 
We succeeded in tuning the model by tuning this factor. This resulted in a close 
agreement of the predicted hourly indoor temperature, heating demand, and 
energy signature with the corresponding measured data. The fact that the 
model is able to follow these 3 indicators, gives some confidence that the model 
actually represents reality. However, the fit techniques are not yet of such a 
nature that we can be completely sure that the parameters are close to the 
actual characteristics.  

• It is interesting to observe that the heating demand of Emmen 228 is higher 
compared to the heating demand of Emmen 224, even though the bedrooms in 
Emmen 228 are unheated, while Emmen 224 has heated bedrooms for most of 
the time over the measured period. This is because in Emmen 228 the total hours 
of window opening are almost 3 times higher compared to that of Emmen 224. 
This situation shows how occupancy window behavior can influence the heating 
demand even when the rooms where the windows are opened are unheated. 

• Sensitivity analysis for thermal mass and thermal mass fraction (for the indoor 
and outer mass) show a very slight effect on the total heating demand of the 
dwellings in Emmen. However, the effect of these parametric analyses on the 
variation in the indoor temperature might be significant and it can help us to get 
a better estimation of the thermal mass and the mass fraction for the indoor and 
outdoor surface.  

• For neighbor’s sensitivity case, the variations in the heating demand are 
overestimated. Because in this analysis we consider a fixed temperature 
difference between the neighbors and the dwelling. However, in real situations, 
the dwelling leads to heat up the neighbor’s or the neighbor’s heats up the 
dwelling. Thus, it will reduce the heat losses/gains compared to the estimated 
ones in this analysis. The same goes for the sensitivity analysis of heating 
setpoint . 

• The sensitivity analysis for the heating setpoint reveals other interesting 
information. In Emmen 224 the increase in the setpoint by 1 °C increases the 
heating demand by 40-50%. While in the case of Emmen 228, the effect of 
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 increasing the setpoint by 1 °C only increases the heating demand by 25-35%. 
The difference in the increase in heating demand between these dwelling can be 
related to differences in user behaviour: e.g. zone 2 and zone 3 are mostly heated 
in Emmen 224 and mostly unheated in Emmen 228. This is because, in case of 
heated bedrooms, there are more losses (transmission, ventilation, and losses to 
the neighbors) because of the higher temperature difference between the indoor 
and ambient. 

• Measurement of the window opening fraction is possible, but probably not 
feasible. In addition, we are looking for ways to reduce the sensor set, beginning 
with the window and door sesnors. Therefore we need  sophisticated techniques 
to estimate the parameters of the model. A more sophisticated ventilation model 
might help to incorporate the airflow through the windows and doors based on 
the dynamic weather conditions (wind speed and wind direction). In addition, it is 
also important to consider the air coupling among the different zones. By adding 
this module, it will also become possible to take into account actual indoor air 
quality perfomences. In addition, artificial intelligent techniques might help to 
predict window opening patterns. 
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 6 Influence of user behavior 

Parallel to the development of the data-driven RC-network simulation model 
(described in chaper 5), one of the NOM houses was also modelled in a detailed 
building simulation model (TRNSYS). During the development of the data-driven 
RC-network simulation model, we saw that some of the behavioral parameters have 
a major impact on energy performance. We wanted to investigate this further. The 
results are described in this chapter.  
 
The purpose of this chapter is to address the following questions: 
 

1) What is the energy consumption of one of the dwellings in Emmen if modeled 
in TRNSYS by using the measured user behavior? And is this anywhere near 
the measured consumption? 

2) What is the influence of 1) ventilation behavior for heated and unheated 
bedrooms and 2) the temperature of the neighbor’s house on the heating 
demand for a dwelling in Emmen. 

To investigate the above questions, this chapter includes the description of the 
TRNSYS model and the parameters used in the model. Furthermore, the sensitivity 
analysis is performed for the windows opening (natural ventilation) and the neighbor's 
boundary temperature by considering the different scenarios. 

6.1 Model Approach 

Emmen 224 is modeled in TRNSYS to evaluate the space heating profile. This is a 
middle-terrace house with a flat roof, which is oriented West-East. Table 5-1 and 
Table 5-2 in chapter 5 show the parameters used in the TRNSYS model. More 
information about the dwelling is available in section 5.1.1. The other parameters 
used such as heating system, internal gains, ventilation network, etc. are available in 
annex C. What is different in this TRNSYS model compared to other TRNSYS 
simulations is that all used behavior that was monitored, this moitoring data is used 
instead of fixed, standardised user patters. 

6.2 Results of TRNSYS Model 

The simulation is run for the whole measurement period, starting from 22 September 
2017 until 28 May 2018. This period covers almost all the space heating periods 
throughout the year. Figure 6-1 represents the heating profile for a one-hour 
simulation time step, for the above-mentioned time period. Since the measurement 
period starts in September, less heating is required at the beginning of the simulation 
period. It can be observed that the maximum heating capacity is 6 kW. The TRNSYS 
model for Emmen 224 provides the total heating demand of 13.6 GJ, which is 
comparable with the measured heating demand (14.8 GJ).   
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Figure 6-1 Space heating profile 

6.3 Sensitivity Analysis 

Based on the outcome of other projects, we know the ventilation and the neighbor’s 
boundary conditions have a considerable effect on the heating demand of a dwelling. 
Parallel to the development of the data-driven RC-network simulation models, we 
used TRNSYS to perform a parametric analysis.  
The aim of this sensitivity analysis is to quantify the effect of ventilation with windows 
and temperature differences with the neighbor’s  on various chosen scenarios: it is 
interesting to observe how different scenarios effect the heating demand of a dwelling 
where all bedrooms are either unheated or heated. The temperature pattern, the 
energy signature and the heating demand for a cold and a typical winter week are 
presented for each case. 

6.3.1 Ventilation with Windows 
As the ventilation through windows is a considerable factor for determining the 
heating demand of the dwelling. The purpose of this sensitivity analysis is to compare 
the various cases with the so-called ideal or base-case when there is no loss through 
the windows. The following 4 cases have been chosen for this aspect:  
 

 Base case: All windows are closed 
 Case 1: Windows in ‘’Kiepstand’’ position and measured opening/closing 

profile 
 Case 2: Same as case 1, but in addition, all the bedroom windows are 

assumed to be fully-open for an hour every day 
 Case 3: Same as case 1, but in addition, the bedroom windows on the East-

side of the house are fully-open for an hour every day 

The aforementioned cases are considered for a house where all bedrooms are either 
unheated or heated. Moreover, during these calculations, the thermal equilibrium is 
assumed towards the neighbors and the same thermostat profile as measured in the 
living room is used as the heating setpoints for the heated bedrooms.  
Table 6-1 shows the comparison of heating demand for all the above-mentioned 
cases for the house where all bedrooms are either unheated or heated; namely the 
‘’Unheated Bedroom’’ and the ‘’Heated Bedroom’’ respectively.  
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Table 6-1 Comparison of heating demand for the different cases of  ventilation with Window 

  Unheated Bedroom Heated Bedroom 

Cases Description 
Heating 

demand [GJ] 
Difference 

[%] 
Heating 

demand [GJ] 
Difference 

[%] 

Base 
Case 

Window closed 
7.0 - 8.1 - 

Case 1 Kiepstand 10.0 43 13.6 68 
Case 2 Kiepstand + 1hr 11.0 57 16.5 104 

Case 3 
Kiepstand + 1hr 

(east -side) 10.7 53 15.6 93 
 
It is interesting to note that in the base-case scenario, the difference in heating 
demand of the house with the unheated and heated bedrooms is not very significant. 
This is because the Rc value between the floors is very low (0.57 m2 K/W). Moreover, 
the ventilation system recovers the heat from the ground floor and adds this heat to 
the bedrooms. In this case, the energy savings can be improved by increasing the 
internal floor insulation (Rc) and making the separation for the ventilation heat 
recovery system. 
In case 1, as expected, we can observe the increase in heating demand which is 43% 
for the unheated bedroom and 68% for the heated bedroom scenario, compared with 
the base-case. For the unheated bedroom scenario in case 2, it is interesting to 
observe that the heating demand increases by 1 GJ compared to the unheated 
bedroom scenario for case 1. It implies that the heat losses from the ground floor 
increase due to the full opening of bedroom windows for an hour every day. For the 
heated bedroom scenario, there is an even bigger increase in the heating demand 
as compared to that of case 1. 
However, the increase in heating demand is not as significant as we expected. This 
is because of the limited capacity of the heating system. The abrupt decrease in the 
indoor temperature has been observed as a consequence of fully opening the 
bedroom windows for 1-hour. Since the heating system has a limited heated capacity, 
it limits the heating power during the particular hours at the expense of the decrease 
in indoor temperature. 
For case 3, the heating demand for both the unheated and heated bedroom case is 
slightly lower than that of case 2. This is due to the reduced heat losses through the 
windows because only the bedroom windows which are on the East-side are fully-
opened for an additional hour of the day, so no cross ventilation took place. 

6.3.1.1 Energy Signature 
Energy signature represents the heating demand versus the ambient temperature 
which is averaged over a defined period, typically a week. The slope of the lines in 
the energy signature represents the total losses. The higher the slope, the higher will 
be the losses and consequently the heating demand of the dwelling. Figure 6-2 shows 
the energy signature for all the above-mentioned cases for the dwelling with both the 
unheated and heated bedroom scenario. The energy demand and the outside 
temperature is averaged on weekly-basis. The dots in the figure represent the data 
points and the lines are obtained from these data points by fitting. The dotted-lines 
represents the cases for the dwelling with unheated bedrooms while the solid-lines 
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 for the dwelling with heated bedroom. As expected, the energy demand decreases 
with the increase in outside temperature. 
It is obvious from the following figure, that the heated bedroom requires more energy 
as compared to the unheated bedroom scenario for the same case. Therefore, the 
energy signatures are higher for the dwelling with heated bedrooms compared to the 
same dwelling with unheated bedrooms. We can also see from the following figure 
that the energy signature for the case when all bedroom windows are fully open for 
an additional hour every day is higher compared to the case when all bedroom 
windows are open in ‘kiepstand’ position. This is because of the higher losses when 
the windows of all bedrooms are fully open for an additional hour.   
 

 

Figure 6-2 Energy signature - Ventilation with windows  

6.3.1.2 Typical and Coldest Winter Week Analysis 
We analysed the above mentioned scenarios for a typical winter week and the coldest 
winter week. 
 
Typical winter week 
The typical winter week that is looked at starts from the 28th of December until the 3rd 
of January. Figure 6-3 and Figure 6-4 show the variations in indoor temperature for 
both the first floor and the second floor along with the heating power required for the 
different scenarios, for the dwelling with unheated and heated bedroom cases. The 
temperature fluctuations on the first floor are because of the opening of the front door 
which results in an abrupt decrease in indoor temperature (because the entrance 
temperature decreases and the floor temperature is the simple average of all the 
zones temperatures on the floor). For the second floor, we can observe the decrease 
in temperature for ‘’Kiepstand+1hr” and ‘’Kiepstand+1hr (for east-side windows)” 
because during these scenarios, the windows are fully open for one hour every day  
(from 9 pm-10 pm), which increases the ventilation losses through the windows and 
consequently increases the heating power to maintain the heating setpoint. Because 
the heating system has a limited heating capacity and thereby unable to add enough 
heat immediately to maintain the indoor setpoint. The variation in heating power for 
different cases for the dwelling with unheated and heated bedroom cases can be 
observed in the following figures. 
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Figure 6-3: Typical winter week analysis for windows case (unheated bedrooms) 

 

 

Figure 6-4: Typical winter week analysis for windows case (heated bedrooms) 

 
Coldest winter week 
The coldest winter week occurs in mid of February and the average temperature is 
around -2 °C. This analysis reflects similar results as we discussed in the previous 
section for the typical winter week analysis. The details for this analysis are described 
in annex D. 

6.3.2 Neighbors Cases 
This analysis is performed to observe the effect of neighbors on the heating demand 
of the dwelling. The Rc value of the wall with the neighbors is typically very low, which 
implies that the neighbors can be a source of heat loss or gain to the dwelling. The 
following cases have been considered under this aspect: 

 Base-case: Thermal equilibrium towards the neighbors 
 Case 1: Heated first floor, unheated second floor at the neighbors 
 Case 2: Both floors heated at the neighbors 
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 The aforementioned cases are considered for the dwelling with both heated and 
unheated bedrooms. Moreover, during these calculations, the windows are 
considered to be on the ’kiepstand’ position (using the open/close pattern as 
measured). Since it is an attached house, it is assumed that the situation is similar at 
both neighbors. Moreover, it is assumed that all other boundary conditions at the 
neighbors are identical to the dwelling under observation except the heating profile. 
The heating at the neighbors is only present in the early morning (6 AM – 8 AM) and 
in the evening (6 PM – 11 PM) with the heating setpoint of 20 °C.  
This analysis implies that the conditions at the neighbors have a significant effect on 
the energy demand of the dwelling, about a 38% increase in the heating demand (in 
this specific case) when both floors are heated and only the first floor is heated at the 
neighbors. Therefore, it is very important to know about the boundary conditions at 
the neighbors in order to predict the performance of a dwelling.  

Table 6-2 Comparison of heating demand for the different cases of neighbors 

  Unheated Bedroom Heated Bedroom 

Cases Description 
Heating 
demand 

[GJ] 

Difference 
[%] 

Heating 
demand 

[GJ] 

Difference 
[%] 

Base 
Case 

Thermal equilibrium 
towards the neighbors 

10.0 - 13.6 - 

Case 1 
Heated ground floor at 

the neighbors 
12.5 25 18.8 38 

Case 2 
Both floors heated at 

the neighbors 
10.5 5 16.2 19 

Table 6-2 shows the comparison of the heating demand for all the above-mentioned 
cases for the dwelling with both unheated and heated bedrooms. From Table 6-2, It 
can be seen that the heating demand is the lowest for the base-case because there 
are no losses to the neighbors, followed by case 2 and case 1. The heating demand 
is the highest for case 1 among all the cases for the dwelling with both unheated and 
heated bedroom scenarios. In case 1, there is a significant increase in heating 
demand for the dwelling with a heated bedroom case, which is due to the increase in 
the heat losses to the neighbors from the bedroom floor. This is because the bedroom 
floor at the neighbors is completely unheated and there is a considerable temperature 
difference between the indoor temperature and the neighbor’s bedroom.  
This analysis implies that the conditions at the neighbors have a significant effect on 
the energy demand of the dwelling, about a 38% increase in the heating demand (in 
this specific case) when both floors are heated and only the first floor is heated at the 
neighbors. Therefore, it is very important to know about the boundary conditions at 
the neighbors in order to predict the performance of a dwelling.  

Table 6-2 Comparison of heating demand for the different cases of neighbors 

  Unheated Bedroom Heated Bedroom 

Cases Description 
Heating 
demand 

[GJ] 

Difference 
[%] 

Heating 
demand 

[GJ] 

Difference 
[%] 

Base 
Case 

Thermal equilibrium 
towards the neighbors 

10.0 - 13.6 - 

Case 1 
Heated ground floor at 

the neighbors 
12.5 25 18.8 38 
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Case 2 

Both floors heated at 
the neighbors 

10.5 5 16.2 19 

6.3.2.1 Energy Signature 
Energy signature represents the heating demand versus the ambient temperature 
which is averaged over a defined period, typically a week. The slope of the lines in 
the energy signature represents the total losses. Higher the slope, higher will be the 
losses and consequently the heating demand of the dwelling. Figure 6-5 shows the 
energy signature for the neighbors heating cases. The energy demand and the 
outside temperature is averaged on a weekly basis. The dotted-lines represent the 
cases for the unheated bedrooms while the solid-lines for the heated bedroom cases. 
As it can be seen in the figure, The energy signature is lowest for base-case followed 
by case 2 (both floors heated at the neighbors) and then case 1 (only ground floor 
heated at the neighbor). Moreover, as expected, the energy demand decreases with 
the increase in outside temperature.  

 

Figure 6-5 Energy signature - Neighbors heating 

6.3.2.2 Typical and Coldest Winter Week Analysis 
As we discussed in Section 6.3.1.2, typical and coldest winter week analysis has 
been also carried out to analyze the variations in the indoor temperature and the 
heating power required for all the above-mentioned cases for the neighbor's 
boundary conditions. 
 
Typical Winter Week 
Figure 6-6 and Figure 6-7 shows the variations in indoor temperature for both first 
and second floor along with the heating power required for the different cases, for the 
dwelling with both unheated and heated bedroom scenario, respectively. The 
temperature fluctuations on the first floor are because of the opening of the front door 
which results in an abrupt decrease in indoor temperature. For the second floor, the 
temperature is lowest in case 1 (neighbor first-floor heating), because of the higher 
thermal losses through the second floor to the neighbors (in Figure 6-6). 
Moreover, in both cases (unheated and heated bedrooms) the heating demand is 
highest for case 1 (only ground floor heated at the neighbor) followed by the case 2 
(both floors heated at the neighbors) and the base-case (thermal equilibrium towards 
the neighbors). 
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Figure 6-6: Typical winter week analysis for neighbors case (unheated bedroom) 

 

 

Figure 6-7: Typical winter week analysis for neighbors case (heated bedroom) 

 
Coldest Winter Week 
As already mentioned, the coldest winter week occurs in mid of February and the 
average temperature is around -2 °C. This analysis shows similar results as we 
discussed in the previous section for the typical winter week analysis. The details for 
this analysis are described in annex D. 

6.4 Conclusions and lessons learned 

From the TRNSYS simultions described in this chapter, we derived the following 
conclusions: 
• The dwelling in Emmen is modeled by using the same measured data and using 

the same assumptions as we used in the RC model (except the difference in the 
ventilation model which is described in detail in annex C). The heating demand 
predicted for the dwelling is 13.6 GJ, which is comparable with the measured 
heating demand (14.8 GJ). 
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 • The difference in space heating demand for the base-case (bedroom windows 
are closed) for the dwelling with an unheated and heated bedroom scenario is 
not very significant. This finding is due to this specific situation because the 
ventilation system recovers the heat from the first floor and add this heat to the 
bedrooms (even when the intention is not to heat up the bedrooms). In this case, 
the energy savings can be improved by increasing the internal floor insulation 
(Rc) and making the separation for the ventilation heat recovery system. 

• One of the most important findings is the increase in heating demand for the case 
when bedroom windows are at kiepstand position, even when the bedrooms are 
unheated. The increase in heating demand is about 43% in this specific case 
compared to the base-case (when all bedroom windows are closed). This implies 
that the opening of the bedroom windows have a considerable effect on the 
heating demand even if the bedrooms are unheated. 

• The typical and coldest winter week analysis reveals another very important 
information about occupancy behavior. The typical and coldest winter week is 
picked only based on the variations in the ambient temperature, with the daily-
average temperature of 5°C and -2°C, respectively.  We normally expect that the 
coldest week should give us the peak heating power required. However, in a real 
situation, it also depends on the occupancy behavior. In this specific situation, 
the heating power required for the typical winter week is higher compared to the 
coldest winter week for the dwelling with both unheated and heated bedroom 
scenarios. This is because of opening the external doors on the ground floor. It 
is observed that occupants tend to open the doors on the ground floor more often 
during the normal winter period (typical winter week), which requires higher 
heating demand to maintain the heating setpoint. However, during the coldest 
week, occupants reflect energy-conscious behavior.  

• In case of limited heating capacity, the opening of the bedroom windows for an 
additional hour (to ventilate the bedrooms) don’t have a significant effect on the 
total space heating demand of the dwelling. However, the indoor temperature 
can drop below the thermal comfort temperature. Neighbor’s boundary conditions 
do have a considerable influence on the total heating demand. This study implies 
that the conditions at the neighbors have a significant effect on the energy 
demand of the dwelling, about a 38% increase in the heating demand (in this 
specific case) when both floors are heated and only the first floor is heated at the 
neighbors. Therefore, it is very important to know about the boundary conditions 
at the neighbors in order to predict the true performance of a dwelling. 
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 7 Conclusions and next steps 

7.1 Introduction 

The aim of TKI Optimaal is to develop models and algorithms for data analysis with 
which, in time, at least 80 to 90% of the deviation between the predicted and actual 
energy and indoor climate performance of individual NoM houses can be explained. 
The approach that we follow is to develop a data-driven RC-network simulation 
model of NOM houses that will allow us to approach the actual performance of 
those houses on an individual level: If a model succeeds in approximating the 
actual performance of a dwelling, it is also clear which aspects determine the 
performance of that dwelling. To reach this we need to develop a data-driven RC-
network simulation model of NOM houses and fit all parameters in the model as 
good as possible so that the model gives outcomes that match with monitored data 
as good as close as possible.  
 
In TKI Optimaal we took a big first step in this by setting up a data-driven RC-
network simulation model and filling in the parameters in that model by a 
combination of expert judgement and fitting of parameters to monitoring data. 

7.2 Conclusions on monitoring and data quality 

In order to achieve this, we have started to set up monitoring in two types of 
houses, namely social rental houses that have been renovated by BAM to NOM 
level and new-build houses at NOM level built by van Wijnen in Ermelo (see Ch2). 
The purpose of the monitoring was to be able to fit the parameters in the model as 
well as possible. With a good fit, we can ultimately make an assessment of the 
cause in the event of disappointing energy consumption. Another, somewhat 
conflicting goal is to make parameter fitting possible with as few sensors as 
possible, i.e. to be able to estimate parameters well enough on the basis of less 
data. 
 
Lessons learned on data quality 
Apart from these objectives, good data quality is important in order to be able to 
make statements. That is why we started monitoring the data and analysing the 
data quality. In TKI Optimaal first basic algoritms were developed to detect possible 
incorrect data points. The most important lessons from data quality monitoring and 
analysis are as follows (for more details, see Ch4): 
• To assess the quality of a sensor's data, it is important to know what the sensor 

measures and where the sensor is placed. Sometimes, for example, a sudden 
short peak can be an actual measurement, for example with a PM2,5 meter 
next to a gas stove, but sometimes a sudden short peak is physically impossible 
and it is clearly a spike (for example, a temperature sensor will never heat up 
and cool down significantly in a very short period of time, due to inertia).  

• In addition, good agreement is required between the data being monitored and 
the parameters used in the model. For example, if we apply a temperature 
sensor to a wall and try to fit an air temperature in the model, this can lead to 
less good results because the mass of the wall will dampen the dynamics of the 
temperature. A good understanding of what is being monitored, how the sensor 
works, where the sensor is mounted and the consequences this has on the 
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 measuring signal is important for the use of data in models. Standardising 
and/or automating monitoring data for performance analysis can help in this 
respect, whereby the link to the parameter in the model used must also be 
explicitly included here or determined at a later stage on the basis of this input.  

• In order to be able to check data quality, it is important that a sensor regularly 
gives a signal. If a sensor only gives a signal when the measuring signal 
changes, it is not possible to determine whether the sensor is functioning 
properly if no signal is received: in that case it is not clear whether there is no 
signal because nothing has changed, or because the sensor has temporarily or 
permanently failed. 

 
Next steps 
In this project the analysis of the data quality were still project specific. The next 
step is to develop algorithms to analyse the data quality automatically. The type of 
sensor and the location where the sensor will be installed will have to be taken into 
account in these algorithms. 

7.3 Conclusions on model and parameter fitting based on monitoring data 

Parallel to the process of collecting the monitoring data, we've set up a data-driven 
RC-network simulation model: a model of the individual houses that we will fit on 
the monitoring data. As described earlier, the ultimate goal is to be able to 
determine the parameters in the model with such certainty that the model provides 
a good description of reality. If this succeeds, it will be possible to see what the 
cause is in the event of disappointing energy consumption. 
 
The choice for the 3-zone RC network model 
A model developed for this purpose will have to do justice to the dynamics of reality 
on the one hand, but not contain too many parameters on the other hand. With a 
model that is too simple, such as a monthly model or a one-zone model, it becomes 
very difficult to determine the cause of an anomaly at the individual level of a single 
household: the effect of that anomaly must be clearly reflected in the model. A 
model with too many parameters, such as a TRNSYS model for example, has too 
many knobs to turn on and therefore too many uncertain components, all of which 
have to be tuned to reality. That is why we opted for an hourly 3-zone RC network 
model with a limited number of parameters. 
 
Ch5 describes how this model is constructed and how the parameters are 
estimated. The initial estimation of the parameters was based on a mix of methods, 
namely partly on the basis of measurements, partly on the basis of the builder's 
specifications and partly on the basis of the expert judgement of the researchers. 
 
For two of the houses in Emmen, we succeeded in making a first parameter fit. The 
model succeeds in matching the following indicators with reality: 1) the actual 
energy consumption, 2) the actual hourly temperature changes in the different 
zones for a whole year and 3) the energy signatures. This is a promising result: it is 
easy to fit a model on one monitoring result, for example the energy consumption, 
but the fact that the model is able to follow these 3 indicators, including the hourly 
pattern of the temperatures in the zones, gives some confidence that the model 
actually represents reality.   
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 There are two comments to be made: 
• The fit techniques are not yet of such a nature that we can be completely sure 

that the parameters are close to the actual characteristics.  
• The fit has been successful thanks to the monitoring data that was available, 

while the explicit goal is to reduce the number of sensors in the houses. 
 
We therefore need ways to determine the parameters in the model with more 
certainty and to use fewer sensors than at present. To gain more confidence in the 
estimated value of some of the parameters in the model, a number of sensitivity 
studies were carried out (see Ch5 and Ch6). 
 
The most important lessons from these analyses are the following (for more details, 
see Ch5 and Ch6):  
• It was already known that ventilation has a major effect on energy consumption. 

However, it was not yet clear that in very well insulated homes, the effect of 
windows that are opened slightly is also significant in unheated rooms. This is 
due to both the temperature equalizing effect due to the good insulation, and 
the equalizing effect of the heat recovery system when not zoned, which is 
usually the case. 

• The energy loss due to ventilation can be so large that the heating system has 
too low a capacity to compensate for the losses. In that case, the energy loss 
appears to be lower, because the energy consumption does not increase 
significantly, but the temperature in the room decreases significantly. Especially 
with low temperature systems, this effect will occur more often. This 
phenomenon is not reflected if you only fit the energy consumption. However, it 
does occur if you also take into account the temperature development in the 
different zones in a building. In homes it is known that especially bedrooms are 
ventilated with windows and grilles. For that reason also it is important to 
monitor the temperature in bedrooms. 

• A comparison between the energy consumption in an average winter week and 
the coldest winter week showed that ventilation behavior also has an 
unexpected influence: the energy consumption in the coldest winter week was 
lower than in the average winter week because the residents closed more 
windows and doors in the coldest week.  

• In very well insulated homes, the effect of the neighbors’ heating behavior is 
also significant. However, modelling what happens at the neighbors is not so 
easy, as the temperature in unheated bedrooms at the neighbors is also 
influenced by the house we consider. The temperature in the bedrooms of the 
neighbors was unknown. And since the temperature in unheated neighboring 
bedrooms is strongly influenced by the temperature in 'our bedrooms', 
especially if 'our' bedroom is heated and the neighbors are not, this is not just 
negligible. It becomes considerably easier if there are temperature 
measurements available for both the adjoining living room/kitchen and the 
adjoining bedrooms. 

• Of course, the effects of the various behavioral components considered 
(setpoint temperature, ventilation through windows and temperature behavior of 
the neighbors) depend on the frequency and extent to which they occur. For 
each of the behavioral effects studied, the effect of realistic variations is many 
tens of percents to sometimes over one hundred percent.  

• Finally, it was not easy to obtain more certainty about the actual values of the 
parameters in the model on the basis of the available monitoring data, let alone 



 

 

TNO report | TNO 2020 R10229  69 / 82  

 to be able to reduce the number of sensors. The study has resulted in a number 
of research areas that will enable us to take this a step further. These are 
described under next steps. 

 
In sum: 
Setting up data-driven RC-network simulation models of the first NOW houses has 
been a successful first step in order to be able to arrive at a realistic analysis of the 
performance guarantee of individual houses. What the research has shown is that it 
is feasible to fit a model to monitoring data and to arrive at a good reflection of the 
actual energy consumption, hourly temperature progression and energy signature. 
This has been achieved despite the fact that the spread in user behavior of 
residents and neighbors in particular leads to large variations in these factors. This 
has been achieved thanks to the fact that we have been able to map out this 
behavior through monitoring and surveys. To eventually be able to explain at least 
80 to 90% of the deviation between the predicted and actual energy and indoor 
climate performance of individual NoM houses, the big challenge will be to 
determine the parameters in the model with more certainty and to use fewer 
sensors than at present. This applies especially, but not exclusively, to the 
behavioral parameters. 
 
Next steps 
There are a number of methods that will help us to get more certainty about the 
parameters in the model. Some of these methods are already being concretely 
developed in follow-up projects, have been worked out in  research proposals, such 
as the MMIP3, or will be taken up in future proposals:  
• Using a probabilistic model to get more certainty about the parameter 

estimation: to get insight in the effect of the uncertainty of all parameters in the 
data-driven RC-network simulation model, we are working on a probabilistic 
model. Instead of using estimated values in the model, we use probability 
curves. The curves are based on literature sources where possible. With these 
curves it is possible to estimate the spread in outcome of the energy use and 
the temperature profile in the houses. We can do this for all parameters 
separately, for instance: what is the effect on the energy use for a realistic 
spread in air tightness or in deviation from the expected insulation level after 
construction. Or we can investigate this effect for all parameters together. By 
using brute computer calculation force, we can see which combinations of 
parameter values will result in the measured energy use, measured hourly 
temperature profiles and measured energy signatures. With this it will be 
possible to see if the parameter estimations we made in TKI Optimaal are 
among the parameter sets that predict the measured data quite closely. A PhD 
student is developing this module at the moment. The outcome will help our 
development of the data-driven RC-network simulation models a lot, but is of 
course no solution for usage on a large scale.  

• Using Artificial Intelligence to predict parameters from measured data: We have 
done a first study to see whether we could predict the use of windows and 
doors based on the measured data. The results were promising: we were able 
to predict if a window was open or closed with an accuracy of 80% for all hours 
of the year. This prediction was done for 2 of the houses in Ermelo with an 
algorithm that was trained by 2 other houses in Ermelo. We plan to expand the 
study next year.  

• Using fault diagnoses to infer if building components or systems malfunction: In 
previous TKI and other projects we focused on fault diagnoses based on 
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 monitoring data, but mainly in non-residential buildings. These techniques can 
also be adapted to houses; what are common faults and what are typical 
patterns in monitoring data due to these faults. For example: if the mechanical 
ventilation of a house is out of balance, this has an effect on the mechanical 
ventilation losses and heat recovery efficiency. I fit is possible to recognize such 
imbalance on monitoring data, the imbalance can be resolved.  

• Using parameter identification by data-driven RC-network modelling: Fitting 
parameters using data-driven RC-network modelling is a technique that 
combines physical models with statistical models. The technique is proven for 
models with only a few parameters: the amount of parameters in the model is 
limited by the amount of parameters that are monitored. Using this technique in 
more complex models is new, but might be valuable especially in combination 
with other techniques. A lesson from data-driven RC-network modelling is that 
we probably need monitoring data of time series with time steps of 1 to 5 
minutes instead of a step of 1 hour which we now often have.  This is 
something to keep in mind in new monitoring project. 

• Using physical models to estimate parameters: One of the key parameters in a 
building model is the building mass. Estimating the building mass from night set 
back profiles is relatively easy for office buildings and older houses with clear 
temperature drops at night. However, for NOM houses this proves difficult since 
the temperature drop at night is quite small. There might be other ways to do 
this, e.g. by looking for holiday periods or using free floating temperatures in 
summer. 

Another action we are already taken is couling a more detailed ventilation model 
(COMIS) to the RC network. With this module added to the RC network, it will be 
possible to take into account the actual indoor air quality performance in addition to 
actual energy performance and actual thermal comfort performance. 
 
In addition, we will have to make a step in the automation of all parts of the process: 
the check of the data quality and the data repair, the fitting of the parameters, the 
fault diagnosis and the performance test. 
 
And last but not least, more reseach is needed to find out what we can learn from 
data to improve renovation concepts, and espessially how renovation concepts 
influence behaviour and how that influences the performance of the concept. 
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 A. Solar data 

All data in Table A-1, Table A-2Table A-3 which is obtained from NEN5060 - 2008 
are used to derive the Solar Fraction. Table A-1 includes the average solar radiation 
on the horizontal surface per month. Table A-2 includes the average solar radiation 
on the vertical surface per month for each orientation. The ratio between the average 
solar radiation on the vertical surface and the average solar radiation on the 
horizontal surface gives the Solar Fraction which is shown in Table A-3 per month for 
each orientation. Finally, to consider the shading by surrounding objects and the 
dwelling itself, the shading factor (fshading) is introduced. The values of the monthly 
shading factor that are assumed in RC model are given in Table A-4. 

Table A-1 Average Solar Radiation on Horizontal Surface per Month 

Month Reference Year 
 Average Solar Radiation on horizontal surface 

(0 deg) [W/m2] per month 
jan 2003 26.8 
feb 2004 49.4 
mrt 1992 79.6 
apr 2002 164.1 
mei 1986 212.3 
jun 2000 225.2 
jul 2002 199.1 

aug 2000 185.9 
sep 1992 117.5 
okt 2004 72.7 
nov 2001 32.6 
dec 2003 20.9 

Table A-2 Average Solar Radiation on Vertical  Surface per Month 

Average Solar Radiation [W/m2] on vertical surface (90 deg) per month per 
orientation 

Month N NE E SE S SW W NW 
jan 10.5 10.8 19.6 41.3 56.1 44.9 22.3 10.9 
feb 18.8 21.2 37.4 59 68.5 53 32.6 20.4 
mrt 30.1 34.2 50.5 71.3 82.9 72.3 51.6 34.7 
apr 52.6 73.7 112.1 136.9 140.2 133.9 109.5 73.1 
mei 68.6 88.9 122 136.9 134.6 143.2 132.8 97.9 
jun 81.6 104 130.6 131.9 123.4 142.9 143.6 111.5 
jul 70.4 95 121.8 127.6 119.2 122.9 112.5 86.5 

aug 60.8 84.1 121.5 140.6 135.5 128.3 109.2 79.1 
sep 40.3 49.7 79.3 107 115.1 98.6 73.5 50 
okt 25.4 28.7 51 83.6 101.6 81.1 49 28.3 
nov 12.9 13.5 23.4 44.3 56.4 44.3 23.5 13.6 
dec 8.3 8.5 16.1 36.4 47.2 35.5 15.4 8.5 
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 Table A-3 Solar Fraction on Vertical  Surface per Month 

Solar Fraction [-] on vertical surface (90 deg) per month per orientation 
Month N NE E SE S SW W NW Average 

jan 0.4 0.4 0.7 1.5 2.1 1.7 0.8 0.4 1.0 
feb 0.4 0.4 0.8 1.2 1.4 1.1 0.7 0.4 0.8 
mrt 0.4 0.4 0.6 0.9 1.0 0.9 0.6 0.4 0.7 
apr 0.3 0.4 0.7 0.8 0.9 0.8 0.7 0.4 0.6 
mei 0.3 0.4 0.6 0.6 0.6 0.7 0.6 0.5 0.5 
jun 0.4 0.5 0.6 0.6 0.5 0.6 0.6 0.5 0.5 
jul 0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.4 0.5 

aug 0.3 0.5 0.7 0.8 0.7 0.7 0.6 0.4 0.6 
sep 0.3 0.4 0.7 0.9 1.0 0.8 0.6 0.4 0.7 
okt 0.3 0.4 0.7 1.1 1.4 1.1 0.7 0.4 0.8 
nov 0.4 0.4 0.7 1.4 1.7 1.4 0.7 0.4 0.9 
dec 0.4 0.4 0.8 1.7 2.3 1.7 0.7 0.4 1.1 

Table A-4 Monthly Shading Factor 

Month jan feb mrt apr mei jun jul aug sep okt nov dec 
Shading 
Factor [-] 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 
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 B.  Questionnaire  

Geachte bewoner en deelnemer aan het TKI Optimaal onderzoek, 
 
1. Belang en doel van het onderzoek 
In uw woning vinden al enige tijd metingen plaats en worden binnenkort enkele 
aanvullende metingen gedaan. Ook hebben we enkele vragen voor u. De metingen 
en de vragen zijn onderdeel van een onderzoeksproject waarin TNO samenwerkt 
met bouwbedrijven om inzicht te krijgen in het energiegebruik van energiezuinige 
woningen. Met de resultaten proberen we in de toekomst nog energiezuinigere 
woningen te kunnen bouwen, waarin het ook heel plezierig wonen is. De 
antwoorden op deze vragen zijn daarom heel belangrijk voor ons.  
 
2. Wat wordt er van u verwacht?  
We vragen u de onderstaande vragenlijst in te vullen. Uw deelname is vrijwillig. 
Mocht u één of meerdere vragen niet in willen vullen, dan kunt u het antwoord open 
laten. U hoeft geen toelichting te geven waarom u een vraag niet wilt 
beantwoorden.  
 
3. Wat gebeurt er met uw gegevens?  
We hechten groot belang aan uw privacy en nemen de daarvoor geldende regels in 
acht. Uw naam- en adresgegevens worden direct na het onderzoek vernietigd. Uw 
gegevens zijn slechts toegankelijk voor daartoe bevoegde leden van het 
onderzoeksteam. Derden hebben geen toegang tot de verzamelde gegevens. In 
publicaties over het onderzoek zijn de antwoorden van individuele deelnemers op 
geen enkele wijze herkenbaar. Na afloop van het onderzoek kunnen de 
geanonimiseerde onderzoeksgegevens nog gedurende 15 jaar worden bewaard. 
 
4. Wilt u verder nog iets weten?  
Mocht u vragen hebben over één van de vragen in onderstaande vragenlijst, dan 
kunt u terecht bij één van de onderzoekers die vandaag/binnenkort bij u in huis 
aanwezig is.  
Bedankt voor u medewerking. 
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 Vragenlijst 
 
Hieronder volgen 16 vragen. Vragen 1 & 2 gaan over de aanwezigheid van 
personen in uw huis. Vragen 3 t/m 10 gaan over het ventileren van uw huis. 
Vragen 11 & 12 gaan over het gebruik van de zonwering. Vragen 13 & 14 gaan 
over uw gebruik van de thermostaat en de verwarming en vragen 15 & 16  
tenslotte gaat over uw tevredenheid met het comfort in uw huis. Door inzicht 
te krijgen in hoe u uw huis gebruikt, krijgen wij een beter inzicht in hoe 
gedrag samenhangt met een lager of hoger energiegebruik.  
 
1. Met hoeveel personen woont u in uw woning (inclusief uzelf):                       

personen 
2. Kunt u aangeven hoeveel personen er op een gemiddelde dag in uw woning 

aanwezig (graag in ieder leeg vakje het aantal personen invullen): 
 

 Maandag Dinsdag Woensdag Donderdag Vrijdag Zaterdag Zondag 

‘s ochtends        

‘s middags        

‘s avonds        

‘s nachts        

 
3. Als u een raam open zet, hoe ver staat dat raam dan meestal open? Zet voor 

ieder seizoen een kruisje voor de meest voorkomende stand. 
 
In de winter:                       In het voorjaar/najaar:             In de zomer: 
 
Op een kiertje                Op een kiertje                      Op een kiertje 
In de kiepstand                          In de kiepstand                         In de kiepstand 
Flink ver open                       Flink ver open                      Flink ver open 
Anders, nl:              Anders, nl:                               Anders, nl: 
…                                        …                                    … 
 
4. Heeft u wel eens (minimaal 1x per week) een raam flink ver open staan, 

bijvoorbeeld om te luchten? Graag beantwoorden voor ieder seizoen. 
 
   In de winter:                         In het voorjaar/najaar:               In de zomer: 
 
   Nee               Nee                                     Nee 
   Ja                Ja                                     Ja 
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 5. Zo ja, Hoe lang staat dat raam dan zover open? Graag beantwoorden voor 
ieder seizoen waar u hierboven een ja heeft ingevuld.   

 
  In de winter:                    In het voorjaar/najaar:         In de zomer: 
 
   Maximaal een kwartier         Maximaal een kwartier        Maximaal een kwartier 
   Een kwartier tot een uur     Een kwartier tot een uur    Een kwartier tot een uur 
   Langer dan een uur          Langer dan een uur         Langer dan een uur 
 
 
6. In welke kamers staat er wel eens (minimaal 1x per week) een raam flink ver 

open? Graag voor ieder seizoen de betreffende kamers aankruisen. (Met 
betrekking tot de slaapkamers: U kunt zelf bepalen welke nummering u voor 
welke slaapkamer gebruikt. Als u minder dan 4 slaapkamers heeft, kunt u de 
niet gebruikte nummers leeg laten. ) 

 
 In de winter:                       In het voorjaar/najaar:            In de zomer: 
 
   In de woonkamer                   In de woonkamer                      In de woonkamer 
   In de keuken                        In de keuken                       In de keuken 
   In de badkamer                       In de badkamer                      In de badkamer 
   In slaapkamer 1                   In slaapkamer 1                      In slaapkamer 1 
   In slaapkamer 2                   In slaapkamer 2                      In slaapkamer 2 
   In slaapkamer 3                   In slaapkamer 3                      In slaapkamer 3 
   In slaapkamer 4                   In slaapkamer 4                       In slaapkamer 4  
   Op zolder                            Op zolder                               Op zolder 
 
 
7. Als u een deur naar buiten open zet (bijvoorbeeld de tuindeur), hoe ver staat 

die deur dan doorgaans open? Zet voor ieder seizoen een kruisje voor de 
meest voorkomende stand. 

 
In de winter:                       In het voorjaar/najaar:            In de zomer: 
 
 Op een kiertje                       Op een kiertje                      Op een kiertje 
 Flink ver open                       Flink ver open                      Flink ver open  
 Anders, nl:                           Anders, nl:                          Anders, nl: 
 …                                    …                                       … 
 
8. Gebruikt u tijdens het douchen de timer van de afzuiging? 
 
    Nee, nooit 
    Ja, soms 
    Ja, altijd 
 
9. Zet u de ventilatie in de keuken hoger tijdens het koken? 
 
    Nee, nooit 
    Ja, soms 
    Ja, altijd  
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 10. Heeft u een kattenluik? 
 
   Nee    
   Ja     
 
11. In welke vertrekken maakt u regelmatig gebruik van de zonwering. Graag voor 

ieder seizoen de betreffende kamers aankruisen. (Met betrekking tot de 
slaapkamers: U kunt zelf bepalen welke nummering u voor welke slaapkamer 
gebruikt. Als u minder dan 4 slaapkamers heeft, kunt u de niet gebruikte 
nummers leeg laten.) 

 
    In de winter:                  In het voorjaar/najaar:            In de zomer: 
 
    In de woonkamer          In de woonkamer                   In de woonkamer 
    In de keuken              In de keuken               In de keuken 
    In de badkamer                In de badkamer                        In de badkamer 
    In slaapkamer 1                In slaapkamer 1                        In slaapkamer 1 
    In slaapkamer 2                In slaapkamer 2                        In slaapkamer 2 
   In slaapkamer 3                In slaapkamer 3                        In slaapkamer 3 
   In slaapkamer 4                In slaapkamer 4                         In slaapkamer 4  
   Op zolder                         Op zolder                             Op zolder 
 
 
12. Als u regelmatig zonwering gebruikt, wanneer gebruikt u deze dan? U mag 

meerdere opties aankruizen. 
 
   De hele dag of een groot deel van de dag 
   Altijd als de zon schijnt 
   Als de zon schijnt en iemand thuis is 
   Als de zon schijnt en het wordt binnen te warm 
   Als de zon schijnt, het binnen warm wordt en er iemand thuis is 
   Als de zon mij of iemand anders hindert (bv in de ogen schijnt) 
   Anders, namelijk: ... 
 
13. Veranderen u of uw huisgenoten in het stookseizoen (oktober tot april) de 

thermostaat instelling in de woonkamer wel eens? U mag meerdere opties 
aankruizen. 

 
   Nee, hij staat meestal op dezelfde stand 
   Ja, bij langere afwezigheid (bv een weekend weg of een vakantie) 
   Ja, bij weg gaan en thuis komen (bv naar werk of de supermarkt) 
   Ja, bij het opstaan en naar bed gaan 
   Anders, namelijk: ... 
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14. Hoe tevreden bent u in het algemeen over het comfort in u woning? Graag uw 

antwoord aankruisen. 
 
   Zeer tevreden 
   Tevreden 
   Neutraal 
   Ontevreden 
   Zeer ontevreden 
 
Kunt u uw antwoord toelichten? 
 
 
 
15. Hoe tevreden bent u in over het comfort tijdens het douchen? Graag uw 

antwoord aankruisen. 
 
   Zeer tevreden 
   Tevreden 
   Neutraal 
   Ontevreden 
   Zeer ontevreden 
 
Kunt u uw antwoord toelichten? 
 
 
 
Dit is het einde van de vragenlijst.  
We danken u hartelijk voor uw medewerking. 
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 C. Parameters of the TRNSYS model 

Temperature Profiles 
Same temperature profiles are used, as described in section 5.1.3.1. 
 
Heating System 
Ideal TRNSYS heating with 6 KW heating power is used. 
 
Solar Gain 
As described in section 5.1.3.4, the hourly solar radiation on horizontal surface (Qsol) 
is available in the KNMI weather station (the nearest is Hoogeveen, STN:279). The 
solar processor is used in TRNSYS to convert solar radiation on a horizontal surface 
to the vertical surfaces.  
 
Internal Gain 
For the occupancy, same heat gains are used as described in the section 5.1.3.5.1. 
In order to incorporate the heat gain caused by the electrical appliance, the electricity 
consumption by the appliance such as TV, stove, washing machine is determined, 
as discussed in section 5.1.3.5.2.  
It is assumed that 90% of the total electricity consumption by the appliances will 
generate internal heat gain. Moreover, it is also assumed that 70% of the electricity 
is used on the ground floor, while only 30% is used on the first floor. The radiative 
and convective part is evenly distributed e.g. 50% for each. Moreover, the electric 
internal gains are evenly distributed based on per m2 of thermal zones. 
 
Ventilation System  
The TRNSFlow package is used to model the infiltration and the ventilation. 
TRNFLOW is the integration of the multizone airflow model COMIS (Conjunction of 
Multizone Infiltration Specialists) into the thermal building module of TRNSYS (Type 
56). Ventilation model includes infiltration, natural ventilation (windows and doors 
opening) and mechanical ventilation. In the RC model, it is assumed that the pressure 
difference between the indoor and outdoor is 1 Pa and infiltration is determine based 
on this assumption. Whereas in TRNSYS model, infiltration is based on the dynamic 
pressure difference between the indoor and the outdoor which depends on the 
weather conditions. Another difference in the ventilation approach used in the RC 
and TRNSYS model is how we model the natural ventilation (airflow through the 
windows and doors), as described in section 5.1.3.6.2 for RC model. In  the TRNSYS 
model, it is based on the wind speed and wind direction along with the internal airlinks 
among the different zones which might influence the air flow through a windows. The 
approach used to model these phenomena are discussed below. 
 
Mechanical Ventilation 
Balanced mechanical ventilation system with the heat recovery efficiency of 75% is 
considered. The air is extracted from the Kitchen, the bathroom and the entrance 
(WC), while the fresh air is supplied to the bedrooms, the living room, and the kitchen. 
The Cs value is evaluated for the flow rate of 1m3/h  by using the following equation:  

�̇�𝐭 =  𝐂𝐂𝐬𝐬 ( ∆𝐏𝐏𝟎𝟎.𝟔𝟔𝟔𝟔) 
Here ∆P of 200 Pa is assumed in order to consider the flow resistance for ducting and 
heat recovery unit. Thereby, the Cs of 0.0000235 kg/s is used to consider the flow 
resistance through the duct and heat recovery unit. The actual measured ventilation 
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 rates for the various ventilation positions (1/2/3), as discussed in the previous 
chapter, are used as an input for the airflow factor in the model.   
 
Window and Door 
The flow through the windows and the doors are modeled by using the large opening 
in the TRNSFlow. For all the windows, the dimensions of 1 m of height and 0.9 m of 
width is used. For the front and back door, 2 m height and 1 m width are assumed. 
Moreover, it is assumed that all windows are bottom-hinged and there is no airflow 
(leakage) when the windows are fully closed.  The measured opening and closing 
schedules for windows and doors are used as an input for the opening factor of 
windows and doors in the TRNSFlow. The opening fraction of 10% is assumed in 
case of windows, however it is 60% in case of the doors opening13.  
Table C-1 shows the average number of hours per week the windows are open 
(based on the measured data), for the whole measurement periods and also for the 
winter period only. Winter period begins from November until March. 

Table C-1: Average number of hours per week the windows are opened 

 Living 
room 

window 

Back 
door 

Front 
door 

Master 
Bed 

Rear 
Bed 

1 

Rear 
Bed 

2 

Kitchen 
window 

Average no of 
hour/week 19.3 3.9 10.7 56.2 19.8 22.0 15.4 

Average no of 
hour/week 

during winter 
0.3 4.6 5.9 53.7 13.7 11.7 12.5 

 
To incorporate the internal circulation of airflow, all internal doors are modeled as a 
crack by using crack area (area available for the flow) of 120 cm2. The following 
formula is used to find out Cs  

𝐂𝐂𝐬𝐬 = 𝐔𝐔 �
𝟏𝟏 (∆𝐏𝐏)
𝛒𝛒  

The Cs value of 0.0154 kg/s. m is used. The staircase is modeled as a crack by 
assuming the crack area of 1 m2. 
 
Infiltration 
Measured infiltration rate (qv10) for the dwelling is 1 L/s.m2. For both floors, the 
infiltration rate of 432 m3/h (qv10) is found which is equal to 1.2 (ACH). This value 
changes over the year based on wind orientation and wind speed.  
Infiltration is modeled by using the cracks in the TRNSFlow with the flow coefficient 
Cs value which represents the above-mentioned infiltration rate. The following 
equation is used to find Cs 

𝛒𝛒 𝐪𝐪𝐏𝐏𝟏𝟏𝟎𝟎 =  𝐂𝐂𝐬𝐬 ( ∆𝐏𝐏𝟎𝟎.𝟔𝟔𝟔𝟔) 

The Cs value is distributed for all zones to get the cumulative Cs value (which is 
obtained from the above equation). 
 
 

 
13 For the windows, ‘’Kiepstand’’ position is assumed and we use the same opening fraction (10%) 
in the RC model. In case of doors, it is assumed that if someone opens the door to enter or leave 
the house, it would be on average 60% open.  
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 D. Cold winter weeks 

Coldest Winter Week Analysis for Ventilation Cases 
Figure D-1 and Figure D-2 represent the variations in indoor temperature for both the 
ground floor and the first floor along with the heating power required for the different 
cases, for the dwelling with both unheated and heated bedroom scenario. The same 
variations in the first-floor temperature and heating power as we observed in the 
typical winter week analysis are found, as seen in the following figures.  
As we can see in Figure D-1 and Figure D-2, the dwelling with the heated bedrooms 
need higher heating power to maintain the setpoint compared to the dwelling with the 
unheated bedrooms. We can also observe the drop in temperature for the second 
floor when the bedroom windows are fully open. Because heating system has a 
limited heating capacity and thereby unable to add enough heat immediately to 
maintain the indoor setpoint.   
 

 

Figure D-1: Coldest winter week analysis for windows case (unheated bedrooms) 

 

 

Figure D-2: Coldest winter week analysis for windows case (heated bedrooms 
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Coldest Winter Week Analysis for Neighbors Cases 
Figure D-3 and Figure D-4 represent the variations in indoor temperature for both the 
ground floor and the first floor along with the heating power required for the different 
neighour cases, for the dwelling with both unheated and heated bedroom scenario. 
The same variations in the first-floor temperature and heating power as we observed 
in the typical winter week analysis are found, as seen in the following figures. 
As we can see in Figure D-3 and Figure D-4, the dwelling with the heated bedrooms 
need higher heating power to maintain the setpoint compared to the dwelling with the 
unheated bedrooms. We can also observe that the temperature in the second floor 
is lowest for the dwelling with unheated bedroom scenario when the bedroom floor at 
the neighbors are unheated.  
 

 

Figure D-3: Coldest winter week analysis for neighbors case (unheated bedroom) 

 

 

Figure D-4: Coldest winter week analysis for neighbors case (heated bedroom) 
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