Intensification of alkaline electrolysis

Your partner in essential chemistry for a sustainable future

Nouryon

AkzoNobel SPECIALTY CHEMICALS

We are experts in electrochemical production

Leading the way for green hydrogen

Plant costs

To make green hydrogen competitive we need to reduce cost

Nouryon

Alkaline and PEM comparison

Note: current efficiency is 98% for alkaline and PEM (due to leak currents and gas crossover)

* Nouryon stack price analysis based on public information

Nouryon

Developments in alkaline

• We see increased current densities while retaining the same efficiency, made possible by cathodes that have been developed for the chlor-alkali industry and improved membranes

	Classic Alkaline	Intensified alkaline
Separator	Asbestos (2-4 mm)	polysulfone-ZrO ₂ (0.5 mm)
Ohmic resistance separator at 80°C	1.0-1.3 Ωcm ²²	$0.13\Omega cm^{21}$
Cathode	Nickel (with iron contamination)	Nickel with noble metals
Cathode overpotential electrode at 90°V (V)	0.28 V ³	0.08 V ⁴

Graph: Recent company presentations and brochures & Vandenborre et al., Int. J. Hydrogen Energy 1984 (for Lurgi data)

- ¹ Vermeiren et al., Int. J. Hydrogen Energy 1998
- ² Tilak et al., Comprehensive treatise of electrochemistry 1981
- ³ O'Brien, Handbook of chlor-alkali 2005, page 263
- ⁴ Recent developments in of AKC' IM technology, 2009

State-of-the-art and development potential

	State-of-the-art (in commercial products)	State-of-the-art performance	Further development potential
Separator	polysulfone-ZrO ₂	$0.13\Omega\text{cm}^2$	Better conducting membranes, anion- exchange membranes
Cathode	Ni with noble metal loading	η_{C} = 0.08 V @ 0.6 A cm ⁻² , 90°C	Stable cathodes with reduced or no noble metals use
Anode	Ni (with iron contamination)	$\eta_A = 0.35 V @ 1.0 A cm^{-2}, 100^{\circ}C^1$	Stable anodes with lower overpotential without noble metals
Electrode structure	"Zero" gap: meshes/expanded metal pushed against membrane	$\sim 0.1 \Omega \mathrm{cm}^2$	Membrane-electrode assemblies with lower resistance
Cell materials	Nickel, Nickel plated steel, EPDM, PPS, Teflon		Reduced use of pure nickel and other materials (eg. thinner bipolar plates, plated steel)
Operating conditions	90 ºC, 30 bara		Operation at higher temperatures to reduce cell potentials
Total performance	~1.8 V @ 0.6 A cm ⁻² , 90°C		

Intensified alkaline: importance of costs

Nouryon

MW test center in Groningen

- The MW test center aims to support technology development of water electrolysis at higher TRL levels (4-7).
- The technology development at the MW test center should lead to a cost prize for the electrolyzer stack of 50-100 €/kW at an efficiency of >80% (for first 5 years of operation) and a pressure of 30 bara by 2030.

- Partners: Shell, Gasunie, Yara, Frames, GSP, TNO/ECN, Hanze, RUG, ISPT, Yokogawa
- Planned to be operational in summer 2020

Nouryon

Hydrohub

Conclusions

- We need to bring down the costs of water electrolysis plants by 65% for a completely installed plant and to <100 €/kW for the stack, while retaining the efficiency of <4.5 kWh/Nm³
- There is ample room for innovation in alkaline electrolysis to achieve these targets

Thank you!

Thijs.deGroot@Nouryon.com M.t.d.groot@tue.nl