Materials for intensified alkaline water electrolysis

Paola Granados Mendoza

Electrochemical Conversion & Materials Den Haag – 21/06/2019

Green Hydrogen at Nouryon

Our planned water electrolysis projects:

- 20 megawatt plant with Gasunie
- 100 megawatt project with Tata
 Steel and Port of Amsterdam
- 250 megawatt project with BP and Port of Rotterdam

Alkaline water electrolysis

	Alkaline water electrolysis	
Current density	2-9 kA/m ²	
Operating conditions	90 °C, up to 30 bara	
Electrolyte	30% KOH	
Cell thickness	1.5-8 cm	
Electrode area	Typically ~2 m ²	
Anode	Nickel	
Cathode	Nickel (activated)	
Separator	Porous separator (typically Zirfon)	
Bipolar plate	Nickel / Ni-plated steel	
Gaskets	Teflon, EPDM	

+ cheap & robust

+ no critical raw materials

- Large & relatively inflexible

Commercial stacks

Nouryon

Current costs of alkaline water electrolysis

Target costs

Alkaline electrolysis: intensification

In intensified electrolysis we aim to change the operating line through improved electrodes, membranes and cell designs, enabling increased current density without increased energy use.

Stack components

Designs of commercial stacks are very different, but they all have the same main components:

. 1. Norsk Hydro electrolyzer. Exploded view of an electrolyzer cell.

Stack components

Nickel electrodes with catalytic coatings

Manufactured typically by electroplating, thermal spraying, or thermal decomposition

Membranes (Zirfon) Manufactured by tape casting

Typically: EPDM / Teflon

Cost breakdown

Different stack designs have different cost breakdowns. As an indication^[1]:

Materials and manufacturing contribute significantly to the stack cost:

Material prices

The material choice is crucial!

Notes:

* Hypothetical flat Bipolar Plate of 5 mm thickness.

** Mild steel plated with 200µm Ni (thickness estimated from ECS Transactions, 16 (39) 31-39 (2009)) Price sources: Chemical Economics Handbook, <u>www.infomine.com</u>, <u>www.worldsteelprices.com</u>

Platinum group metal prices

Polymer prices

Materials for cathodes (example Asahi Kasei)

Characteristics of AKCC cathodes [1]

Asahi Kasei Chemicals Coorporation (AKCC) cathodes for H_2 evolution ^[1]

Improved materials are not necessarily cheaper.

	New Cathode (2003-)	Conventional Cathode (1983-)
Main composition	RuO ₂	NiO
Manufacture	Thermal decomposition	Plasma-sprayed
Overvoltage (6kA/m ²)	90mV	140mV
Coating thickness	Less than 10μ m	200-300 μ m
Substrate	t 0.1-0.2mm wire mesh	t 0.5-1.0mm expanded
Photograph		
Estimated material cost of catalyst coating per m ²	150 €/m²	19 €/m²

Cathodes for intensified electrolysis

High surface area NiO, 200 µm thickness ^[1] 19 €/m² Nickel NiMo alloy (50-50 wt%) NiMo 27 €/m² 100 µm thickness [2] 3,5 g/m² Pt, 1,5 g/m² Ru Pt-Ru allov 98 €/m² loading [3] RuO₂ 20 g/m² Ru loading ^[1] 150 €/m²

Description

Fig. 4 - Tafel plots for hydrogen evolution at various coating materials in 4 M NaOH at 333 K.

Source: [3]

ECS Transactions, 16 (39) 31-39 (2009), JP2016148074A Electrochimica Acta, 29 (11), 1551-1556 (1984) [3] Int. Journal of hydrogen energy, 36, 15089-15104 (2011)

Not only the functionality is important. The cost is important too!

Electrochemical Conversion & Materials conference - June 2019

Nouryon

Estimated material

cost of catalyst

coating per m²

Conclusions

With the current electrolyzer designs we don't reach the target price of H_2 to make electrolysis competitive to the fossil fuel route. We need to intensify and re-design!

- We need to develop improved and low cost electrolyzer components:
 - Better electrodes & membranes: excellent performance & lifetime at high current densities
 - Improved cell designs: minimize power losses, optimal flow conditions, operation at high current density, pressure and temperature
- We need to improve the stack manufacturing processes:
 - Low cost manufacturing techniques that minimize the material usage while preserving high performance
 - Move towards continuous manufacturing processes and automation of stack assembly

Thank you for your attention!

Rjukan: 165 MW, 27,900 Nm³/h Closed in 1971

00

