

WINDTRUE: UQ for wind turbine rotor aeroelasticity

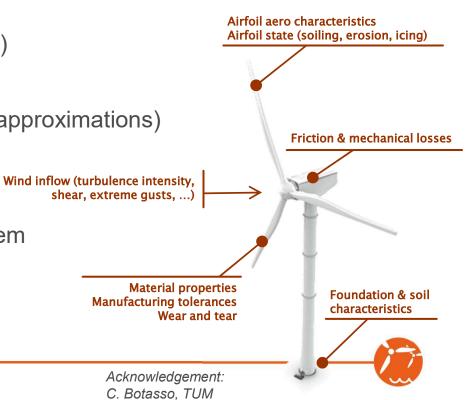
Gerard Schepers (ECN.TNO) and Benjamin Sanderse (CWI)

Matchmaking day, 14 February 2019

Project overview

- Participants: TNO (coordinator), DNV-GL, Suzlon Energy (Suzlon), Center of Mathematics and Informatics (CWI)
- Project period: January 1st 2019 December 31st 2020
- Total project budget: 441 kEuro (341 kEuro TKI subsidy)

Partners	Role in the project					
TNO	Project coordinator					
	Aerodynamic and Aero-elastic modelling					
Suzlon Energy B.V. (Suzlon)	Aerodynamic and Aero-elastic modelling					
DNV GL Netherlands B.V.	Aerodynamic and Aero-elastic modelling					
CWI	Uncertainty quantification expert					



Motivation: Uncertainties in Wind Turbine Modeling

- Sources of uncertainty:
 - Uncertainty in the model parameters
 - Uncertainty in the inputs (e.g., wind conditions)
 - Structural uncertainty (model inadequacy)
 - Algorithmic uncertainty (numerical errors and approximations)
 - Experimental testing uncertainty
- Types of uncertainty:
 - Aleatory: due to stochastic nature of the problem
 - Epistemic: due to a lack of knowledge

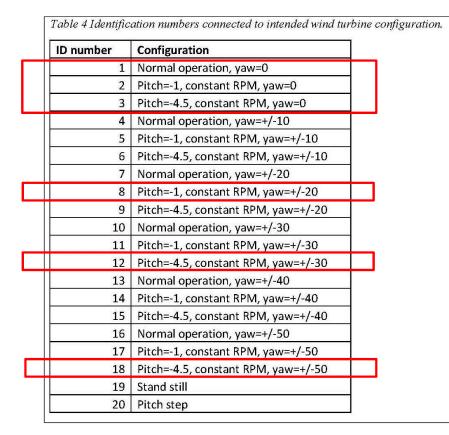
Goal and approach

- Goal:
 - Develop calibrated aerodynamic models with a *quantified level of uncertainty*
- Approach:
 - Determine main uncertain model (and input) parameters and assess effect on model response.
 - Calibrate the uncertain model parameters with measurements.
- Based on DanAero field measurements which are made available in IEA Task 29 by DTU
 - Courtesy to DanAero consortium: DTU, LM, Vestas, Siemens, Dong Energy

Pressure and inflow measurements on the NM80 turbine in the Tjaereborg wind farm

- Surface **pressure** and **inflow** measured at 4 radial stations (100 Hz)
- The outboard station is also instrumented with 60 microphones for high frequency surface pressure measurements (50kHz)
- Accelerometers, blade root moments, tower moments, yaw angle, rotational speed, pitch angle, azimuth angle (35 Hz)
- **Meteo** mast data at 7 heights (35 Hz)
- Measurements from June to September 2009

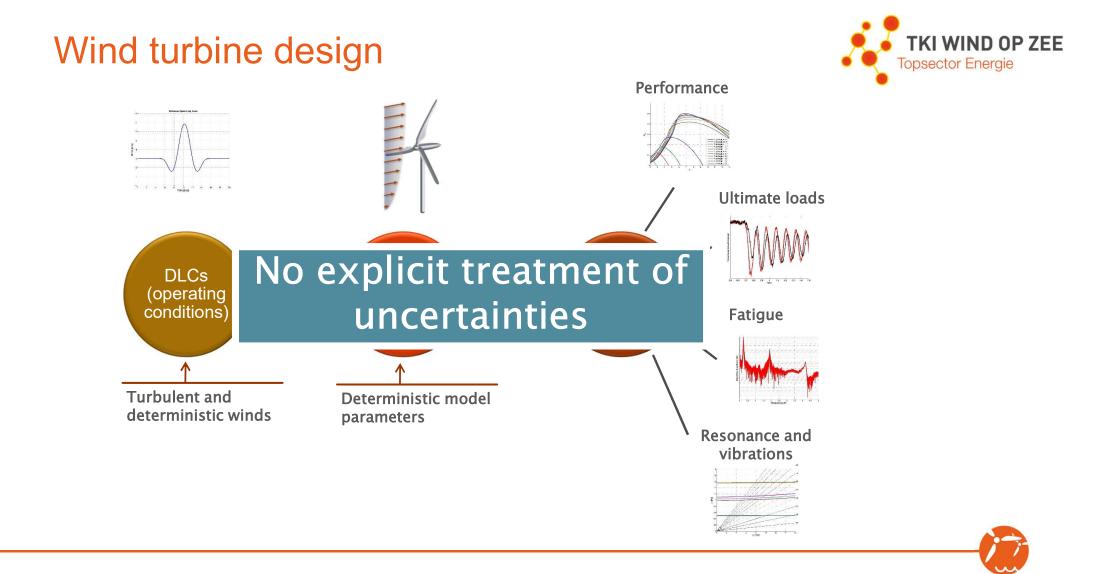
Pressure and inflow measurements on the NM80 turbine in the Tjaereborg wind farm

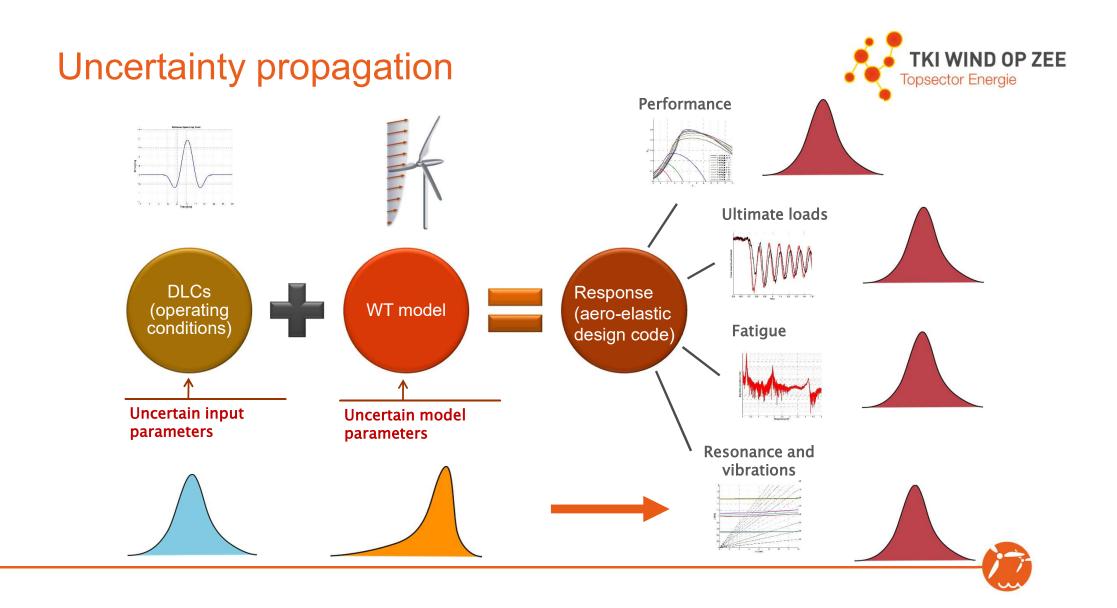

five hole pitot tubes

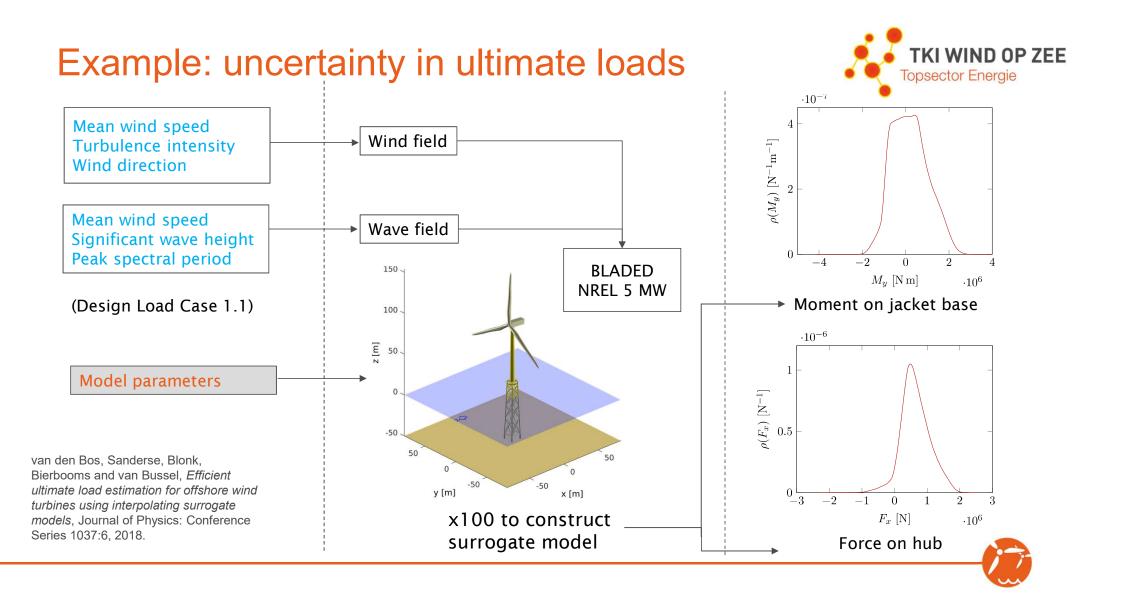
Measurement campaigns

Status	Comment	Number of 10-min series	Max mean Wdir	Min mean Wdir	Max mean nac WSP	Min mean nac WSP	Max mean WSP	Min mean WSP	Measurement day
Include	First measurement	25	263	228	6.0	4.0	6.4	5.3	20090716
	day								
Include		26	259	245	7.7	4.1	8.9	5.5	20090721
Include	Pressure reference for surface pressure measurements broke down	26 24	200 128	111	6.6 7.8	2.5 5.7	6.5 7.7	3.2 3.9	20090806 20090807
Not include	Repair of pressure reference	-	-	-	-		-	-	20090812
Include		5	319	270	5.3	4.2	5.3	3.3	20090814
Include		25	279	263	9.9	5.0	9.0	5.0	20090818
Include		49	179	128	9.3	4.5	9.3	5.9	20090819
Not include	Mounting of high frequency equipment								20090827
Include	Rain on sensors at the end of day	45	252	153	13.4	7.1	13.7	9.4	20090901
Include	High frequency tests. More tests exists without pressure measurements	8	330	289	6.4	4.9	7.2	4.0	20090909
Include	Test of aerodynamic devices	18	325	285	9.6	5.0	9.8	4.7	20090910
Include	LIDAR measurement of inflow in the EU project TOPFARM. Last measurement day	24	327	278	8.6	6.1	9.1	5.9	20090911

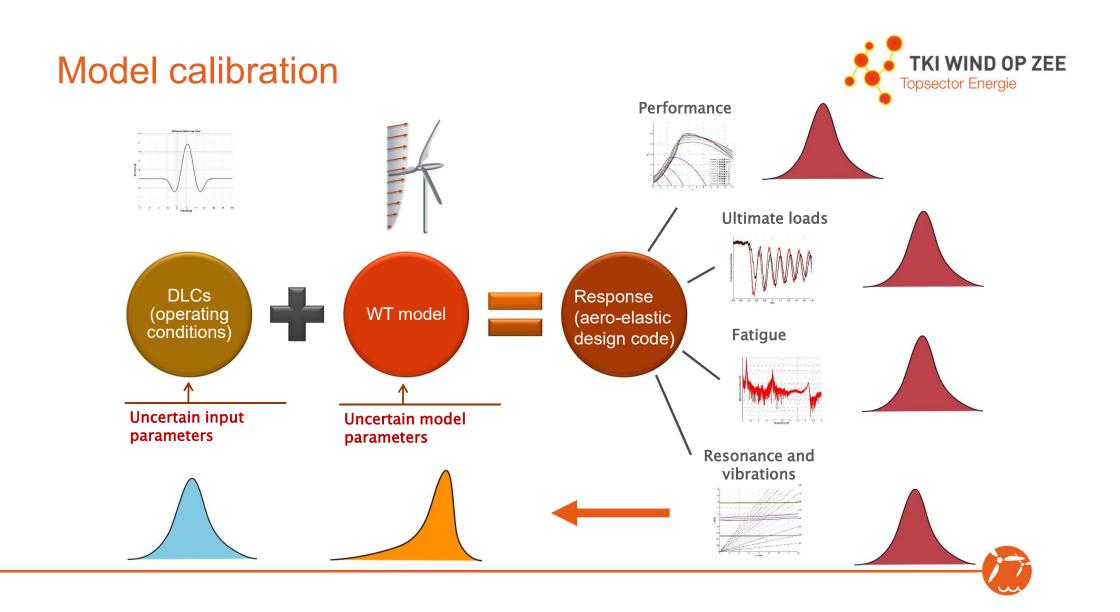
in total 275 10 min. time series




Work packages and tasks



- WP1: Quantification of uncertainty in models and their input
- WP2: Calibration of uncertain parameters in aero-elastic models



WP1: Quantifying model uncertainty

- Identify uncertainties in the DANAERO measurements
 - T1.1: Investigate the uncertainty in the measured output data of the DANAERO experiments.
 - T1.2: Develop a reference BEM model to statistically reproduce the DANAERO measurements.
- Characterize uncertainties in aerodynamic (sub)models of BEM
 - T1.3: Model-based global sensitivity analysis of ultimate and fatigue loads using Morris screening and Sobol' indices.
 - T1.4: Measurement-based aerodynamic sub-model assessment by means of skill scores.

WP2: Aeroelastic model calibration

- Calibration of aeroelastic models using DANAERO measurement data and surrogate models
 - Bayesian model calibration
 - Speed up: replace full aero-elastic model with surrogate model

